均值滤波算法及实现

均值滤波器的使用场景:

均值滤波器使用于处理一些如上述蓝色线的高斯噪声场景

红色曲线是经过均值滤波处理后的数据。主要因为均值滤波设置数据缓冲区(也即延时周期),使得测量值经过缓冲不会出现特别大的变化。

黄色曲线为高斯噪声,红色曲线为经过均值滤波处理后的数据。

如果想要更好的滤波效果:

  • 增加滤波和,也即往后多取几帧数据进行累加求和,再处以累加次数;
  • 嵌套使用均值滤波,也即用上一均值滤波输出作为本次滤波输入;

均值滤波不适合处理类似橙色曲线的脉冲噪声的数据

蓝色曲线为经过均值滤波处理后的数据,虽然整体幅值降低了,但是如61-69区间,实际测量只在61附近出现一次突变,但很快下降正常,但经过均值滤波处理,虽然幅值被降低,但其实也没有达到理想,反而将突变脉冲以一个恒定的值持续了9s(累加次数,也即缓冲周期)。

目标脉冲值是0,未经过均值滤波处理在61s出现一较大突变,由于系统本身的阻尼等作用,系统实际不会产生太大的振荡,可能由于来的比较快,系统会微微抖一下就稳定。但如果使用均值滤波处理后,在61s处的尖峰脉冲硬是被拉长了9帧才退出,系统稳定性必定太差。因此脉冲信号噪声不适合用均值滤波,可以考虑使用低通滤波!


均值滤波作用

均值滤波是一种常见的图像处理技术,用于平滑图像中的噪声或细节。它的主要用途包括:

  1. 去除噪声:图像中的噪声是由于图像采集过程中的各种因素引入的不希望的干扰。均值滤波可以通过计算像素周围邻域内像素的平均值来平滑图像,并减少噪声的影响。

  2. 平滑图像:在某些情况下,图像中的细节过多或变化过于剧烈,可能会导致视觉上的不连续或不平滑感觉。均值滤波可以通过平均周围像素的值来减少这些细节,使图像更加平滑。

  3. 降低图像分辨率:在一些应用中,需要降低图像的分辨率以减少计算或存储的需求。均值滤波可以通过对图像进行平滑来实现降低分辨率的效果。

  4. 图像预处理:在某些图像处理任务中,如图像分割或边缘检测,均值滤波可以作为预处理步骤,帮助提取更准确的特征或边缘。

需要注意的是,均值滤波是一种简单且常用的滤波方法,但它可能会导致图像细节的模糊或平滑化。对于某些应用场景,可能需要考虑其他更高级的滤波技术,以在平滑图像的同时保留更多的细节信息。


均值滤波实现:

#include <stdio.h>
#include <stdlib.h>double* weightedMeanFilter(double* input, int length, int windowSize, double* weights) {double* output = (double*)malloc(length * sizeof(double)); // 创建新数组int halfWindowSize = windowSize / 2;for (int i = 0; i < length; i++) {double weightedSum = 0.0;double weightSum = 0.0;for (int j = i - halfWindowSize; j <= i + halfWindowSize; j++) {if (j >= 0 && j < length) {weightedSum += input[j] * weights[j - (i - halfWindowSize)];weightSum += weights[j - (i - halfWindowSize)];}}output[i] = weightedSum / weightSum; // 计算加权平均值}return output;
}int main() {double input[] = {1.2, 2.3, 3.4, 4.5, 5.6};int length = sizeof(input) / sizeof(input[0]);int windowSize = 3;double weights[] = {0.1, 0.6, 0.3}; // 示例权重系数数组double* output = weightedMeanFilter(input, length, windowSize, weights);printf("Input: ");for (int i = 0; i < length; i++) {printf("%.2f ", input[i]);}printf("\nOutput: ");for (int i = 0; i < length; i++) {printf("%.2f ", output[i]);}free(output); // 释放动态分配的内存return 0;
}
/*
Input: 1.20 2.30 3.40 4.50 5.60 
Output: 1.57 2.52 3.62 4.72 5.44
*/

增加权重系数可以使均值滤波更加灵活,以更好地适应不同的应用场景和需求。具体来说,增加权重系数的意义包括:

  1. 强调重要区域:通过调整权重系数,可以使某些像素在计算均值时具有更大的贡献。这样可以使均值滤波更加关注重要的区域,从而保留或突出这些区域的细节。例如,在人脸识别中,可以增加权重系数以突出人脸区域,以便更好地提取人脸特征。

  2. 抑制噪声或异常值:某些像素可能受到噪声或异常值的干扰,导致它们的值与周围像素明显不同。通过降低这些像素的权重系数,可以减少它们对均值的影响,从而抑制噪声或异常值的影响。

  3. 考虑空间相关性:在一些情况下,像素之间的空间关系对滤波结果的影响很大。通过调整权重系数以考虑像素之间的空间相关性,可以更好地保留图像的结构信息。例如,可以使用高斯加权系数来加权计算均值,以便更好地平滑图像并保留边缘。

  4. 自适应滤波:通过根据像素的特征或属性来动态调整权重系数,可以实现自适应滤波。这意味着不同的像素可以具有不同的权重,从而使滤波更加适应图像的局部特征。例如,可以根据像素的梯度值或纹理信息来调整权重系数,以实现更好的平滑效果。

总之,增加权重系数可以提供更多的灵活性和控制力,使均值滤波能够更好地适应不同的图像处理需求,并在平滑图像的同时保留重要的细节。

#include <stdio.h>
#include <stdlib.h>double* weightedMeanFilter(double* input, int length, int windowSize, double* weights) {double* output = (double*)malloc(length * sizeof(double)); // 创建新数组int halfWindowSize = windowSize / 2;for (int i = 0; i < length; i++) {double weightedSum = 0.0;double weightSum = 0.0;for (int j = i - halfWindowSize; j <= i + halfWindowSize; j++) {if (j >= 0 && j < length) {weightedSum += input[j] * weights[j - (i - halfWindowSize)];weightSum += weights[j - (i - halfWindowSize)];}}output[i] = weightedSum / weightSum; // 计算加权平均值}return output;
}int main() {double input[] = {1.2, 2.3, 3.4, 4.5, 5.6};int length = sizeof(input) / sizeof(input[0]);int windowSize = 3;double weights[] = {0.1, 0.6, 0.3}; // 示例权重系数数组double* output = weightedMeanFilter(input, length, windowSize, weights);printf("Input: ");for (int i = 0; i < length; i++) {printf("%.2f ", input[i]);}printf("\nOutput: ");for (int i = 0; i < length; i++) {printf("%.2f ", output[i]);}free(output); // 释放动态分配的内存return 0;
}
/*
Input: 1.20 2.30 3.40 4.50 5.60 
Output: 1.57 2.52 3.62 4.72 5.44
*/


结果对比:


参考:

1、简单的均值滤波讲解(附代码)_哔哩哔哩_bilibili

2、https://www.cnblogs.com/faithlocus/p/17532226.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3249605.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

趣谈linux操作系统 9 网络系统-读书笔记

文章目录 网络协议栈基础知识回顾网络分层网络分层的目的各层作用简介延伸-ip地址,有类,无类,cidr socket实现分析tcp/udp回顾socket编程回顾TCP编程回顾UDP编程回顾差异 socket相关接口实现浅析sokcet实现解析创建socket的三个参数socket函数定义及其参数创建socket结构体关联…

Redis高级篇—分布式缓存

目录 Redis持久化 RDB持久化 AOF持久化 RDB与AOF对比 Redis主从 全量同步 增量同步 Redis哨兵 RedisTemplate集成哨兵实现 Redis分片集群 散列插槽 集群伸缩 故障转移 自动故障转移 手动故障转移 RedisTemplate访问分片集群 Redis持久化 RDB持久化 RDB全称Re…

《基于 CDC、Spark Streaming、Kafka 实现患者指标采集》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…

第三篇 Vue项目目录结构介绍

1、最外层目录结构 passagerFrontPage ├── .vscode //vscode配置&#xff0c;不用理会 ├── node_modules //项目依赖&#xff0c;npm install命令执行后自动生成 ├── public //公共资源存放 ├── src //源码 ├── tests //选装&#xff1a;测试模块 ├── .git…

负载均衡 lvs

1. 4层转发(L4) 与 7层转发(L7) 区别 4层转发(L4) 与 7层转发(L7) 区别 转发基于的信息 状态 常用的服务 L4 基于网络层和传输层信息&#xff1a; L4转发主要依赖于网络层IP头部(源地址&#xff0c;目标地址&#xff0c;源端口&#xff0c;目标端口)和传输层头部&#xff…

【python】OpenCV—Scanner

文章目录 1、需求描述2、代码实现3、涉及到的库函数cv2.arcLengthcv2.approxPolyDPskimage.filters.threshold_localimutils.grab_contours 4、完整代码5、参考 1、需求描述 输入图片 扫描得到如下的结果 用OpenCV构建文档扫描仪只需三个简单步骤: 1.边缘检测 2.使用图像中…

UniVue@v1.5.0版本发布:里程碑版本

前言 以后使用UniVue都推荐使用1.5.0以后的版本&#xff0c;这个版本之后&#xff0c;更新的速度将会放缓。 希望这个框架能够切实的帮助大家更好的开发游戏&#xff0c;做出一款好游戏&#xff01;本开源项目采用的开源协议为MIT协议&#xff0c;完全开源化&#xff0c;以后也…

IDEA的工程与模块管理

《IDEA破解、配置、使用技巧与实战教程》系列文章目录 第一章 IDEA破解与HelloWorld的实战编写 第二章 IDEA的详细设置 第三章 IDEA的工程与模块管理 第四章 IDEA的常见代码模板的使用 第五章 IDEA中常用的快捷键 第六章 IDEA的断点调试&#xff08;Debug&#xff09; 第七章 …

web安全之SQL手工注入漏洞测试

一、目的 1.掌握SQL注入原理&#xff1b; Sql注入详解(原理篇)_sql注入攻击的原理-CSDN博客 2.了解手工注入的方法&#xff1b; 3.了解MySQL的数据结构&#xff1b; 4.了解字符串的MD5加解密 二、过程 1.进去后出现以下界面 找注入点 发现有注入点&#xff0c;即id被代入执…

怎样优化 PostgreSQL 中对复杂的日期时间格式转换和时区处理?

&#x1f345;关注博主&#x1f397;️ 带你畅游技术世界&#xff0c;不错过每一次成长机会&#xff01;&#x1f4da;领书&#xff1a;PostgreSQL 入门到精通.pdf 文章目录 怎样优化 PostgreSQL 中对复杂的日期时间格式转换和时区处理&#xff1f; 怎样优化 PostgreSQL 中对复…

Linux-开机自动挂载(文件系统、交换空间)

准备磁盘 添加三块磁盘&#xff08;两块SATA&#xff0c;一块NVMe&#xff09; 查看设备&#xff1a; [rootlocalhost jian]# ll /dev/sd* [rootlocalhost jian]# ll /dev/nvme0n2 扩&#xff1a;查看当前主机上的所有块设备&#xff0c;通过如下指令实现&#xff1a; [root…

【Linux】Linux环境设置环境变量操作步骤

Linux环境设置环境变量操作步骤 在一些开发过程中本地调试经常需要依赖环境变量的参数&#xff0c;但是怎么设置对小白来说有点困难&#xff0c;今天就介绍下具体的操作步骤&#xff0c;跟着实战去学习&#xff0c;更好的检验自己的技术水平&#xff0c;做技术还是那句话&…

Elasticsearch:评估搜索相关性 - 第 1 部分

作者&#xff1a;来自 Elastic Thanos Papaoikonomou, Thomas Veasey 这是一系列博客文章中的第一篇&#xff0c;讨论如何在更好地理解 BEIR 基准的背景下考虑评估你自己的搜索系统。我们将介绍具体的技巧和技术&#xff0c;以便在更好地理解 BEIR 的背景下改进你的搜索评估流程…

vue项目build以后整合到springboot项目里面---------gxl

很多时候我们需要用到vue的组件&#xff0c;但是全栈的背景下懒得去搞前后端分离&#xff0c;很多权限校验后台都写好了&#xff0c;没必要再去做接口或者前端写一遍了&#xff0c;因此我们需要把打包后的项目整合到项目里面。 整合也很简单&#xff0c;照常vue项目开发&#…

Git分支合并以及分支部分合并 提交记录合并

Git分支合并,以及分支部分合并,提交记录合并 最近工作中用到git分支合并的场景,记录一下. 分支整体合并,合并所有记录 仅合并分支部分代码

0718,TCP协议,三次握手,四次挥手

爬东西只能明天了喵 上课喵&#xff1a; TCP&#xff08;Transmission Control Protocol&#xff0c;传输控制协议&#xff09;的状态迁移图 这图别看&#xff0c;会瞎 TCP&#xff08;Transmission Control Protocol&#xff0c;传输控制协议&#xff09;的状态迁移图描述…

插画插件:成都亚恒丰创教育科技有限公司

【插画插件&#xff1a;数字创意时代的艺术加速器】 在数字化浪潮汹涌的今天&#xff0c;视觉艺术以其独特的魅力穿梭于互联网的每一个角落&#xff0c;成为连接人心、传递情感与信息的桥梁。而在这股创意洪流中&#xff0c;插画插件以其高效、便捷、个性化的特点&#xff0c;…

【两两交换链表中的节点】python刷题记录

书接上回【旋转链表】 思路&#xff1a; 1.创建dummy结点 2. 灵神牛啊 代码&#xff1a; # Definition for singly-linked list. # class ListNode: # def __init__(self, val0, nextNone): # self.val val # self.next next class Solution:def swa…

AU软件包(2017-2027)下载

下载链接&#xff1a; 迅雷网盘https://pan.xunlei.com/s/VO1kO3N_VUX46LHpigZ04Tj8A1?pwd5s8y# 夸克网盘https://pan.quark.cn/s/6c68be17ba5c 百度网盘https://pan.baidu.com/s/1m4nV0kWTQpY_cGQejl-_Kg?pwdetcp

收银系统源码-商城下单,门店接单

随着新零售时代的不断进步&#xff0c;线下线上一体化的收银系统&#xff0c;被很多门店越来越重视。用户在线上商城下单后&#xff0c;门店如何接单呢&#xff0c;如何处理订单呢&#xff1f; 1.收银系统开发语言 核心开发语言: PHP、HTML5、Dart后台接口: PHP7.3后合管理网…