Go 语言 UUID 库 google/uuid 源码解析:UUID version7 的实现

google/uuid 库地址

建议阅读内容

在阅读此篇文章之前,建议先了解 UUIDv1 的构成、UUIDv4 的 API 以及掌握位运算。

了解 UUIDv1 的构成可以参考Go 语言 UUID 库 google/uuid 源码解析:UUID version1 的实现 或 RFC 9562。

了解 UUIDv4 的 API 可以看Go 语言 UUID 库 google/uuid 源码解析:UUID version4 的实现。

位运算可以参考详解位运算(&、|、、&、>>、<<)。

相较于 UUIDv1,UUIDv7 的改进

UUIDv7 是 UUIDv1 的优化版本,其优化有三点:

  1. 使用自 1970 年 1 月 1 日午夜(Unix 纪元时间戳源)以来的毫秒数代替自 1582 年 10 月 15 日以来的 100 纳秒数作为时间戳。

  2. UUIDv7 在序列中保持时间戳的顺序(UUIDv1 会对时间戳进行重排),这意味着生成的 UUID 会按时间顺序排列。优化在数据库中作为索引时的性能表现。

  3. 随机生成序列中的 74 位(UUID 总共 128 位),增加熵特性,减少逆向推导的可能性(UUIDv1 包含 MAC 地址)。

UUIDv7 的结构介绍

UUIDv7 主要由三部分组成(以下陈述并没有按顺序排列):

  1. 在最高的 48 位分配的Unix时间戳。

  2. 6 位标志位(2 位变体标识,4位版本标识)。

  3. 以及随机填充的74位。

UUIDv7 具体的字段和位具体布局如下:

(表格顶部的两行数字用于表示位数,00,01,…,10,11,…,20,21,…,30,31)

 0                   1                   2                   30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           unix_ts_ms                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          unix_ts_ms           |  ver  |  rand_a (12 bit seq)  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|var|                        rand_b                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                            rand_b                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

实现

UUID 存储在 type uuid 中

type uuid [16]byte

uuid[0:5]: 时间戳
uuid[6] 高 4 位:版本号
uuid[6] 低 4 位 与 uuid[7]: 随机值part1
uuid[8:15]:随机值part2

具有 v7 特色的时间戳的制作

var lastV7time int64const nanoPerMilli = 1000000// getV7Time 返回毫秒和纳秒 / 256 的时间。
// 返回的 (milli << 12 + seq) 保证大于
// 任何之前对 getV7Time 的调用返回的 (milli << 12 + seq)。
func getV7Time() (milli, seq int64) {timeMu.Lock()defer timeMu.Unlock()nano := timeNow().UnixNano()milli = nano / nanoPerMilli// 序列号在 0 到 3906 之间(nanoPerMilli>>8)seq = (nano - milli*nanoPerMilli) >> 8now := milli<<12 + seqif now <= lastV7time {now = lastV7time + 1milli = now >> 12seq = now & 0xfff}lastV7time = nowreturn milli, seq
}

函数 getV7Time 实际上生成两部分内容:milli 和 seq。

milli 就是时间戳,而 seq 是随机值part1。

milli 就是通过 time.Now().UnixNano() 获取的 Unix 纪元到当前时间的纳秒数 / 1x10^6 次方得到的。(因为1毫秒 = 1x10^6纳秒)。需要注意的是,/ 会导致纳秒部分精度丢失。

seq 则等于 (nano - milli * nanoPerMilli) >> 8,因为 milli 在进行 / 时导致纳秒精度丢失,所以 nano - milli * nanoPerMilli 的结果就是丢失的纳秒数,>>8 等于除以 256。因为丢失的纳秒数徘徊在 0~999999 之间,所以 seq 的值在 0 ~ 3906 之间。

同时,我们还会记录上次生成的时间信息(milli << 12 + seq),通过比较上次的时间信息和当前的时间信息,判断其是否保持递增,如果没有递增则在上次的时间信息基础上再重新计算 milli 和 seq。

序列生成第一步:填充随机值

UUIDv7 的生成是从向 uuid 的所有位中填充随机值开始的,然后再将对应位置变成正确的内容。而填充随机值的方式便是使用 UUIDv4 的 API:NewRandom 或者 NewRandomFromReader,简单说就是将 uuid(16bytes) 的 128 位随机填满。

注:UUIDv4 生成的时候也会填充版本号和变体号,因为 UUIDv7 版本号和 UUIDv4 不同,所以会覆盖版本号,但是变体号并不会被覆盖,所以后续不再填充变体号。

UUIDv4 具体的字段和位具体布局如下:

 0                   1                   2                   30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           random_a                            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          random_a             |  ver  |       random_b        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|var|                       random_c                            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           random_c                            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

后续过程会在 random_a 的位置填充 milli,在 random_b 的位置填充 seq,而 var 和 random_c 的位置已经是最终值。

序列生成第二步:填充时间戳与版本号

// makeV7 填充 48 位时间(uuid[0] - uuid[5]),设置版本 b0111(uuid[6])
func makeV7(uuid []byte) {_ = uuid[15] // 边界检查t, s := getV7Time()uuid[0] = byte(t >> 40)uuid[1] = byte(t >> 32)uuid[2] = byte(t >> 24)uuid[3] = byte(t >> 16)uuid[4] = byte(t >> 8)uuid[5] = byte(t)uuid[6] = 0x70 | (0x0F & byte(s>>8))uuid[7] = byte(s)
}

理解这段代码,需要知道 UUIDv7 的时间戳部分只有 48 位,所以会从 t 中截取 48 位放置到 UUID 的高 48 位中。byte() 的用途是截取其低 8 位进行填充,>> 操作的目的是将高位移到低位,如 uuid[0] = byte(t >> 40) 就是将 t 右移 40 位,然后截取当前低 8 位放置到 uuid[0] 中。

0x70 | (0x0F & byte(s>>8)) 的作用是在 uuid[6] 中同时设置版本号(高 4 位为 0111)和随机值part1的一部分(低 4 位)。

序列生成第三步:整合调用

func NewV7() (UUID, error) {uuid, err := NewRandom()if err != nil {return uuid, err}makeV7(uuid[:])return uuid, nil
}

整合步骤如下:

  1. 调用 NewRandom 填充随机值,使用 uuid 接收返回的 UUIDv4
  2. 检查错误
  3. 调用 makeV7 填充时间戳和版本号
  4. 返回 UUIDv7

完整函数调用关系图

在这里插入图片描述

到这里一个完整的 UUIDv7 便完成了。

以上就是 UUIDv7 实现的所有内容,希望你能有所收获。

参考资料

RFC 9562
uuid package

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3248474.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

husky 和 lint-staged 构建代码项目规范

目录 前言 最简单的方法 过 scripts 来解决如果检测工具多&#xff0c;需要多次处理 通过 husky(哈士奇)来解决容易遗忘的问题 1. 安装 2. husky init 3. 试一试​ lint-stadge 只 lint 改动的 1. 安装 2. 修改 package.json 配置 3. 添加 npm 脚本: 4.使用 Husky…

成为git砖家(1): author 和 committer 的区别

大家好&#xff0c;我是白鱼。一直对 git author 和 committer 不太了解&#xff0c; 今天通过 cherry-pick 的例子搞清楚了区别。 原理 例如我克隆了著名开源项目 spdlog 的源码&#xff0c; 根据某个历史 commit A 创建了分支&#xff0c; 然后 cherry-pick 了这个 commit …

卡片式组件封装demo

效果视频&#xff1a; 卡片组件 样式还得细调~&#xff0c;时间有限&#xff0c;主要记录一下逻辑。 html结构&#xff1a; 目录 父组件数据处理数据格式 父组件的全部代码 子组件数据处理props参数 样式部分三个圆点点击三圆点在对应位置显示查看弹框点击非内容部分隐藏查看…

第四章 自定义序列类

目录 5.1 序列类型的分类 容器序列 扁平序列 可变序列 不可变序列 5.2 序列的abc继承关系 5.3 序列的、和extend的区别 操作符 操作符 extend方法 5.4 实现可切片的对象 5.5 bisect管理可排序序列 深入解释 5.6 什么时候我们不该用列表 深入解释 5.7 列表推导式…

第十章 多线程、多进程和线程池编程

目录 11.1 多线程编程 什么是多线程&#xff1f; 创建和启动线程 线程同步 11.2 多进程编程 什么是多进程&#xff1f; 创建和启动进程 进程间通信 11.3 线程池和进程池 什么是线程池和进程池&#xff1f; 使用线程池 使用进程池 11.4 选择多线程还是多进程 适用…

vue3 vxe-grid修改currentPage,查询数据的时候,从第一页开始查询

1、当我们设置好VxeGrid.Options进行数据查询的时候,下面是可能的设置&#xff1a; const gridOptions reactive<BasicTableProps>({id: UserTable,showHeaderOverflow: false,showOverflow: true,keepSource: true,columns: userColumns,size: small,pagerConfig: {cur…

【常见开源库的二次开发】基于openssl的加密与解密——单向散列函数(四)

目录&#xff1a; 目录&#xff1a; 一、什么是单项散列函数&#xff1f; 1.1 如何验证文件是否被修改过 1.2 单项散列函数&#xff1a; 二、单向hash抗碰撞 2.1 弱抗碰撞&#xff08;Weak Collision Resistance&#xff09; 2.2 强抗碰撞&#xff08;Strong Collision Resista…

[GXYCTF2019]Ping Ping Ping1

打开靶机 结合题目名称&#xff0c;考虑是命令注入&#xff0c;试试ls 结果应该就在flag.php。尝试构造命令注入载荷。 cat flag.php 可以看到过滤了空格,用 $IFS$1替换空格 还过滤了flag&#xff0c;我们用字符拼接的方式看能否绕过,ag;cat$IFS$1fla$a.php。注意这里用分号间隔…

【光伏发电功率预测】方法综述学习笔记2《光伏发电功率超短期预测方法综述》

本文参考《光伏发电功率超短期预测方法综述》&#xff1a;https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjQwNzA0Eg5nZHlqczIwMjMwNzAyNBoIeHp4NW40YmU%3D 文章目录 摘要&#xff1a;引言1. 光伏发电功率的影响因素分析1.1传递过程中的影响因素1.1.1…

DDei在线设计器-数据格式说明

数据格式说明 DDei的所有设计数据都以文件为单位保存在一个JSON对象中。JSON对象包含了全量的页签、舞台、图层、控件的位置以及属性信息。开发人员可以存储这个JSON到服务端数据库中&#xff0c;从而轻易的实现保存功能&#xff1b;也解析这个JSON&#xff0c;将其转换成自己业…

对红酒品质进行数据分析(python)

http://t.csdnimg.cn/UWg2S 数据来源于这篇博客&#xff0c;直接下载好csv文件。 这篇内容均在VScode的jupyter notebook上完成&#xff0c;操作可以看我的另一篇博客&#xff1a;http://t.csdnimg.cn/69sDJ 一、准备工作 1. 导入数据库 #功能是可以内嵌绘图&#xff0c;并…

用了6年git,不知道cherry-pick是啥意思

背景 可能是测试开发角色原因&#xff0c;平时很少有代码冲突或多人协同的编码场景。今天有个协同项目&#xff0c;需要提交自己的代码到其它业务的代码库中&#xff0c;这个代码库是分支开发分支上线模式&#xff0c;同时会有多个同事提交代码&#xff0c;然后模块负责的同学…

常用优秀内网穿透工具(实测详细版)

文章目录 1、前言2、安装Nginx3、配置Nginx4、启动Nginx服务4.1、配置登录页面 5、内网穿透5.1、cpolar5.1.1、cpolar软件安装5.1.2、cpolar穿透 5.2、Ngrok5.2.1、Ngrok安装5.2.2、随机域名5.2.3、固定域名5.2.4、前后端服务端口 5.3、NatApp5.4、Frp5.4.1、下载Frp5.4.2、暴露…

【数学建模】——【线性规划】及其在资源优化中的应用

目录 线性规划问题的两类主要应用&#xff1a; 线性规划的数学模型的三要素&#xff1a; 线性规划的一般步骤&#xff1a; 例1&#xff1a; 人数选择 例2 &#xff1a;任务分配问题 例3: 饮食问题 线性规划模型 线性规划的模型一般可表示为 线性规划的模型标准型&…

vue2.0结合使用 el-scrollbar 和 v-for实现一个横向滚动的元素列表,并且能够自动滚动到指定元素(开箱即用)

效果图&#xff1a; 代码&#xff1a; <div class"gas-mode-item-body"><el-scrollbar style"width: 300px;height: 100%;" wrap-style"overflow-y:hidden" ref"scrollbarRef"><div style"display: flex&quo…

Python Linux环境(Centos8)安装minicoda3+jupyterlab

文章目录 安装miniconda安装python环境启动 最近服务器检查&#xff0c;我下面的服务器有漏洞&#xff0c;不得已重装了&#xff0c;正好记录下怎么从零到python写代码。 安装miniconda miniconda是anconda的精简版&#xff0c;就是管理python环境的得力助手。 # 创建一个名…

7.18 学习笔记 解决分页越界问题 及分页查询

1.解决分页越界 1.1出现的问题 于是我索性把分页去掉想是不是就可以了&#xff0c;结果发现还不行 1.2解决方法 就当我找了一两个小时抓耳挠腮时&#xff0c;万幸在csdn上找到了相关的帖子&#xff0c;在此感谢一下那位大佬。 原因是我的实体类中没有构造方法&#xff0c;那…

软考系规百天备考攻略:基础阶段的三轮强化

早在今年4-5月份的时候&#xff0c;我就曾经讲过系统规划与管理师的备考建议&#xff0c;也就是先从教程学起&#xff0c;先读教程&#xff0c;而且我也说过&#xff0c;不要迷信任何培训班或者培训视频&#xff0c;任何培训班或者培训视频都不能取代你认真读至少一遍教程&…

BIOMOD2 物种分布模拟教程

原文链接&#xff1a;BIOMOD2 物种分布模拟教程https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247609373&idx5&sn492e7597314a5f9e358c35e4780b275f&chksmfa826dfacdf5e4ecf8ac06bdeba5469b31650bdbefbc8fb88b79c0f332714c453a4cc058d29f&token155…

Calibration相机内参数标定

1.环境依赖 本算法采用张正友相机标定法进行实现&#xff0c;内部对其进行了封装。 环境依赖为 ubuntu20.04 opencv4.2.0 yaml-cpp yaml-cpp安装方式&#xff1a; &#xff08;1&#xff09;git clone https://github.com/jbeder/yaml-cpp.git #将yaml-cpp下载至本地 &a…