【iOS】类对象的结构分析

目录

    • 对象的分类
    • object_getClass和class方法
    • isa流程和继承链分析
      • isa流程实例验证
      • 类的继承链实例验证
    • 类的结构
      • cache_t结构
      • bits分析
      • 实例验证
        • 属性properties
        • 方法methods
        • 协议protocols
        • ro
        • 类方法
      • 类结构流程图解


对象的分类

OC中的对象主要可以分为3种:实例对象(instance)、类对象(class)和元类对象(meta-class)

实例对象

通过类alloc出来的对象,每次调用alloc都会产生新的instance对象

NSObject* obj1 = [[NSObject alloc] init];
NSObject* obj2 = [[NSObject alloc] init];
NSLog(@"%p %p", obj1, obj2);
//  打印结果:0x600000180040 0x600000180050

从运行结果可看出以上是不同的两个实例对象,分别占据着两块不同的内存
实例对象在内存中存储的信息包括:isa指针、其他成员变量

类对象

#import <objc/runtime.h>
Class objectClass1 = [obj1 class];
Class objectClass2 = [obj2 class];
Class objectClass3 = [NSObject class];
Class objectClass4 = object_getClass(obj1);  //Runtime API
Class objectClass5 = object_getClass(obj2);  //Runtime API
//  打印结果:0x1d6fc6070 0x1d6fc6070 0x1d6fc6070 0x1d6fc6070 0x1d6fc6070

以上都是NSObject的类对象,从运行结果可看出它们都是同一个对象,即这些指针指向的是同一块内存,每个类在内存中有且只有一个class对象
类对象在内存中存储的信息主要包括:isa指针、superclass指针、类的属性信息(@property)、类的对象方法信息(instance method)、类的协议信息(protocol)、类的成员变量(ivar,类型、名称等描述信息而不是具体的值)

元类对象

看下面如何获取元类对象(元类对象类型仍是一个类对象,底层都是struct objc_class* Class,只是包含的信息不一样)

Class objectMetaClass = object_getClass(object_getClass(obj1));

将类对象作为参数传入,再次调用object_getClass函数

那如果调用两次class方法呢?

Class objectMetaClass2 = [[NSObject class] class];
NSLog(@"%p %p %d", objectMetaClass, objectMetaClass2, class_isMetaClass(objectMetaClass));
//  打印结果:0x1d6fc6020 0x1d6fc6070 1 0

从打印结果可以看出,class不管调多少次返回的一直是类对象,不会是元类对象
每个类只有一个元类对象,元类对象在内存中存储的信息主要包括:isa指针、superclass指针以及类方法信息

object_getClass和class方法

查看objc4源码

object_getClass方法中传入各种对象,通过访问isa,返回不同的类对象:

Class object_getClass(id obj)
{if (obj) return obj->getIsa();else return Nil;
}//  传入类名字符串,返回对象的类对象
Class objc_getClass(const char *aClassName)
{if (!aClassName) return Nil;// NO unconnected, YES class handlerreturn look_up_class(aClassName, NO, YES);
}

class方法直接返回类对象:

//+ (id)self {
//    return (id)self;
//}
//- (id)self {
//    return self;
//}+ (Class)class {return self;
}- (Class)class {return object_getClass(self);
}//+ (Class)superclass {
//    return self->getSuperclass();
//}
//- (Class)superclass {
//    return [self class]->getSuperclass();
//}

isa流程和继承链分析

上面我们了解了对象的分类,认识到不同类型对象的差别,那么是什么让这些不同类型的对象联系起来从而构成OC对象体系的呢?

上经典老图:

请添加图片描述

isa指向链

实际上就是isa指针将它们联系起来形成 isa指向链

  • 实例对象instanceisa指向类class
  • 类对象class也有isa指向的是元类meta
  • 元类meta中也有isa指向的是根元类root meta

在这里插入图片描述
当调用对象方法时,通过实例对象的isa找到class,最后找到对象方法的实现进行调用
当调用类方法时,通过类对象的isa找到meta-class,最后找到类方法的实现进行调用

类继承链

根据superclass的指向,也可总结出OC类的继承链

  • 子类继承于父类,父类继承于根类,根类指向的是nil
  • 在元类中也存在继承,子类的元类继承于父类的元类,父类的元类继承于根元类,根元类又继承与根类

在这里插入图片描述

当Student的实例对象要调用Person的对象方法时,会先通过isa找到Student的class,然后通过superclass找到Person的class,最后找到对象方法的实现进行调用

类似地,当Student的类对象要调用Person的类方法时,会先通过isa找到Student的meta-class,然后通过superclass找到Person的meta-class,最后找到类方法的实现进行调用

isa流程实例验证

Person类继承于NSObject,Student类继承于Person

@interface Person : NSObject {@publicint _age;
}- (void)personInstanceMethod;
+ (void)personClassMethod;@end@interface Student : Person {@publicint _no;
}- (void)studentInstanceMethod;
+ (void)studentClassMethod;@end

打断点,通过LLDB查看isa关联类的地址:

//  打印出实例的地址
Person* person = [Person alloc];
NSLog(@"%@", person);
Student* student = [Student alloc];
NSLog(@"%@", student);

类对象的地址和实例对象isa所指向的地址有所出入,isa需要进行一次位运算,才能计算出类对象的真实地址
在获取到对象的isa值后,可以通过&(按位与)一个掩码ISA_MASK 0x007ffffffffffff8ULL来获取到对象关联的类地址:
在这里插入图片描述

根据student实例的isa地址找到关联类Student的地址0x00000001000082d8

在这里插入图片描述

同样地,根据Student类对象的isa找到Student元类的地址0x00000001000082b0

在这里插入图片描述

根据Student元类对象的isa找到关联类的地址0x00000001d6fc6020

在这里插入图片描述

找到NSObject类对象的isa关联类地址0x00000001d6fc6020,与Student元类对象的isa关联类地址一致,可以验证元类的isa指向根元类,且根元类的isa指向自己

在这里插入图片描述

类的继承链实例验证

Class tClass = [Student class];
Class pClass = class_getSuperclass(tClass);
Class nClass = class_getSuperclass(pClass);
Class rClass = class_getSuperclass(nClass);
NSLog(@"\n tClass-%@ \n pClass-%@ \n nClass-%@ \n rClass-%@ \n", tClass, pClass, nClass, rClass);

在这里插入图片描述
可看出类对象的继承链:Student->Person->NSObject->nil

Student * student = [Student alloc];
Class tClass = object_getClass(student);
Class mtClass = object_getClass(tClass);
Class mtSuperClass = class_getSuperclass(mtClass);
NSLog(@"\n student %p 实例对象 -- %p 类 -- %p 元类 -- %p 元类父类", student, tClass, mtClass, mtSuperClass);
Person * person = [Person alloc];
Class pClass = object_getClass(person);
Class mpClass = object_getClass(pClass);
Class mpSuperClass = class_getSuperclass(mpClass);
NSLog(@"\n person %p 实例对象 -- %p 类 -- %p 元类 -- %p 元类父类", person, pClass, mpClass, mpSuperClass);
NSObject * obj = [NSObject alloc];
Class objClass = object_getClass(obj);
Class mobjClass = object_getClass(objClass);
Class mobjSuperClass = class_getSuperclass(mobjClass);
NSLog(@"\n NSObject %p 实例对象 -- %p 类 -- %p 元类 -- %p 元类父类 == %p NSObject类对象", obj, objClass, mobjClass, mobjSuperClass,
[NSObject class]);

在这里插入图片描述

可看出元类的继承链:Student Meta-class -> Person Meta-class -> NSObject Meta-class -> NSObject class -> nil

类的结构

前面我们了解到了Class的类型是struct objc_class*结构体指针类型,下面就来分析一下这个结构体的定义

struct objc_object {Class _Nonnull isa  OBJC_ISA_AVAILABILITY;
};struct objc_class : objc_object {// Class ISA;Class superclass;cache_t cache;             // formerly cache pointer and vtableclass_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags//  ...其他代码,objc_class定义共计531行代码...
};

继承于objc_object说明:

  • 还有一个继承过来的Class类型变量isa
  • superclass:指向父类的指针
  • cache:缓存相关
  • bits:用于获取具体的类信息

cache_t结构

cache_t是一个结构体

struct cache_t {
private:explicit_atomic<uintptr_t> _bucketsAndMaybeMask; // 8字节union {struct {explicit_atomic<mask_t>    _maybeMask; // uint32_t 4字节
#if __LP64__uint16_t                   _flags;     // 2字节
#endifuint16_t                   _occupied;  // 2字节};explicit_atomic<preopt_cache_t *> _originalPreoptCache;  // 8字节};};
//  此段为部分代码,cache_t定义总共有290行

分析整个cache_t的结构,发现cache_t的内存总共为16字节,后面会对其底层进行学习

bits分析

objc_class里有一段源码是data操作

class_rw_t *data() const {return bits.data();
}
void setData(class_rw_t *newData) {bits.setData(newData);
}

dataclass_rw_t类型,下面是其部分源码:

在这里插入图片描述

ro:成员变量、methods:方法、properties:属性、protocols协议
我们在类中定义的方法、属性等就是通过调取class_rw_t结构体中的方法获取的

实例验证

下面通过实例来验证一下类的结构是否如上面一致
创建Person类继承于NSObject,定义一些属性、方法以及协议:

@protocol PersonDelegate<NSObject>- (void)personDelegateMethod;
// 让Person类遵守并实现此协议方法
@end@interface Person : NSObject<PersonDelegate> {NSString* hobby;
}@property (nonatomic, strong)NSString* name;
@property (nonatomic, assign)NSInteger age;- (void)sayHello;
+ (void)sayWorld;@end

LLDB调试输出

请添加图片描述

第一个地址0x0000000100008470是类的第一个成员isa,第二个地址0x00000001d6fc6070是类的第二个成员superclass
isasuperclass都是结构体指针类型,占用8字节,cache结构体占用16字节,XYPerson的地址加上8 + 8 + 16 = 32就可以得到bits的地址

请添加图片描述

相加并强转为class_data_bits_t *类型得到bits的地址0x0000000100008270,再调用data()方法就得到类型为class_rw_t的地址

属性properties

调用class_rw_tproperties()方法,得到property_array_t类型的数组,继承于list_array_tt,找到list下的ptr

请添加图片描述

class property_array_t :public list_array_tt<property_t, property_list_t, RawPtr>
{typedef list_array_tt<property_t, property_list_t, RawPtr> Super;public:property_array_t() : Super() { }property_array_t(property_list_t *l) : Super(l) { }
};

ptrproperty_list_t类型,继承于entsize_list_tt

struct property_list_t : entsize_list_tt<property_t, property_list_t, 0> {
};

entsize_list_tt部分源码:

struct entsize_list_tt {uint32_t entsizeAndFlags;uint32_t count;  //  数量uint32_t entsize() const {return entsizeAndFlags & ~FlagMask;}uint32_t flags() const {return entsizeAndFlags & FlagMask;}Element& getOrEnd(uint32_t i) const {ASSERT(i <= count);return *PointerModifier::modify(*(List *)this, (Element *)((uint8_t *)this + sizeof(*this) + i*entsize()));}Element& get(uint32_t i) const {  //  获取元素方法ASSERT(i < count);return getOrEnd(i);}//  ...其他代码...
};

通过调用get()方法,获取元素,下面的结果就是Person类的nameageproperties()里,而实例变量hobby不在这里

请添加图片描述

方法methods

调用class_rw_tmethods()方法,得到method_array_t类型的数组,继承于list_array_tt,同样找到list下的ptr

请添加图片描述

这里看到ptrmethod_list_t类型,同样继承于entsize_list_tt,其中有count为6,调用get()方法查看输出

请添加图片描述

这里的元素为method_t类型,method_t为结构体类型,其中的一个成员变量为big的结构体,里面是方法名称等信息:

struct method_t {method_t(const method_t &other) = delete;// The representation of a "big" method. This is the traditional// representation of three pointers storing the selector, types// and implementation.struct big {SEL name;const char *types;MethodListIMP imp;};
//  ...其他代码
};

调用big方法查看输出

请添加图片描述

这6个方法分别是:

  • 实例方法:sayHello
  • 属性nameageset/get方法
  • C++析构函数:.cxx_destruct

且都是实例方法,并没有类方法sayWorld

协议protocols

调用class_rw_tprotocols()方法,得到protocol_array_t类型的数组,继承于list_array_tt,同样找到list下的ptr

请添加图片描述

这里protocol_list_t并没有继承于entsize_list_tt

struct protocol_list_t {// count is pointer-sized by accident.uintptr_t count;protocol_ref_t list[0]; // variable-sizesize_t byteSize() const {return sizeof(*this) + count*sizeof(list[0]);}protocol_list_t *duplicate() const {return (protocol_list_t *)memdup(this, this->byteSize());}typedef protocol_ref_t* iterator;typedef const protocol_ref_t* const_iterator;const_iterator begin() const {return list;}iterator begin() {return list;}const_iterator end() const {return list + count;}iterator end() {return list + count;}
};

看到protocol_list_t的定义,我们知道count值为1,说明是有值,但是其成员是protocol_ref_tuintptr_t类型,那怎么输出查看这个count中的1到底是什么呢

在这里插入图片描述

查看protocol_ref_t的定义,通过注释信息,我们可以看到protocol_ref_t未映射到protocol_t类型,那我们就找protocol_t的定义

在这里插入图片描述
这里看到protocol_t中有mangledName以及instanceMethods等,只要得到protocol_t就可以输出我们想要的名称方法等信息,怎么才能从protocol_ref_t映射到protocol_t呢,全局找一下吧

在这里插入图片描述

这里我们看到,protocol_ref_t是可以强转protocol_t的,那我们就试试:

请添加图片描述

强转成功,调用demangledName方法,我们就得到了LGPersonDelegate,那我们再找一下协议方法

请添加图片描述

按照method查看输出的步骤,成功找到协议方法personDelegateMethod

ro

调用class_rw_tro方法,得到class_ro_t的结构体

请添加图片描述
请添加图片描述

查看ivars,也是继承于entsize_list_ttivar_list_t类型的结构体,调用get方法查看:

请添加图片描述

这6个实例变量分别是自定义hobby以及系统自动帮我们自动生成的带有_的实例变量

类方法

methods中的方法全部都存在类中,都是实例方法,那么类方法应该去在元类中找

请添加图片描述

通过类的isa指针找到元类,再根据上面的步骤找到并输出这个元类的methods

这里我们不由地想,OC的底层是C/C++实现的,不存在对象方法和类方法的区分,有的都是函数实现,在OC的设计中,一个类可以new出无数个对象,因此把方法存在类中,而不是动态创建的对象中,是合理的。
因为OC的对象方法和类方法的定义是-+的区分,那么方法名称就会有重名的存在,因此才会引入元类的概念,元类的存在就是解决类方法重名的问题

类结构流程图解

类的结构流程图解析:

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3247652.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

HTML2048小游戏(最新版)

比上一篇文章的2048更好一点。 控制方法&#xff1a;WASD键&#xff08;小写&#xff09;或页面上四个按钮 效果图如下&#xff1a; 源代码在图片后面 源代码 HTML <!DOCTYPE html> <html lang"en"> <head><meta charset&…

Qt日志库QsLog使用教程

前言 最近项目中需要用到日志库。上一次项目中用到了log4qt库&#xff0c;这个库有个麻烦的点是要配置config文件&#xff0c;所以这次切换到了QsLog。用了后这个库的感受是&#xff0c;比较轻量级&#xff0c;嘎嘎好用&#xff0c;推荐一波。 下载QsLog库 https://github.c…

Python、Rust与AI的未来展望

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…

leetcode简单题27 N.119 杨辉三角II rust描述

// 直接生成杨辉三角当前行 pub fn get_row(row_index: i32) -> Vec<i32> {let mut row vec![1; (row_index 1) as usize];for i in 1..row_index as usize {for j in (1..i).rev() {row[j] row[j] row[j - 1];}}row } // 空间优化的方法 pub fn get_row2(row_ind…

【C#】计算两条直线的交点坐标

问题描述 计算两条直线的交点坐标&#xff0c;可以理解为给定坐标P1、P2、P3、P4&#xff0c;形成两条线&#xff0c;返回这两条直线的交点坐标&#xff1f; 注意区分&#xff1a;这两条线是否垂直、是否平行。 代码实现 斜率解释 斜率是数学中的一个概念&#xff0c;特别是…

Windows 2012安装之实现远程连接

新建虚拟机 点击稍后安装操作系统 点击Microsoft Windows(W) 选择Windows Server 2012 设置虚拟机名称、安装位置 选择你的电脑核数 点击编辑虚拟机设置 点击CD/DVD(SATA) 使用ISO映像文件(M) 配置完之后点击确定 然后开启虚拟机 下一步&#xff1a; 点击现在安装&#xff1a…

【LeetCode】删除排序链表中的重复元素 II

目录 一、题目二、解法完整代码 一、题目 给定一个已排序的链表的头 head &#xff0c; 删除原始链表中所有重复数字的节点&#xff0c;只留下不同的数字 。返回 已排序的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,3,4,4,5] 输出&#xff1a;[1,2,5] 示例 …

【单片机毕业设计选题24069】-物联网节水灌溉系统设计

系统功能: 完成基于物联网的节水灌溉系统的电路图以及软件代码编写。要求系统可以通过传感器监测土壤的湿度和环境温湿度&#xff0c;如果土壤湿度低于限值和环境温湿度超过限值&#xff0c;则需开启继电器&#xff0c;打开电机水泵进行供水灌溉&#xff1b;当土壤湿度高于限值…

Python | Leetcode Python题解之第242题有效的字母异位词

题目&#xff1a; 题解&#xff1a; class Solution:def isAnagram(self, s: str, t: str) -> bool:s_c Counter(s)t_c Counter(t)if(len(s_c) ! len(t_c)):return Falseelse:for key, value in s_c.items():if t_c.get(key) ! value:return Falsereturn True

浅谈数学模型在UGC/AIGC游戏数值配置调参中的应用(AI智能体)

浅谈数学模型在UGC/AIGC游戏数值配置调参中的应用 ygluu 卢益贵 关键词&#xff1a;UGC、AIGC、AI智能体、大模型、数学模型、游戏数值调参、游戏策划 一、前言 在策划大大群提出《游戏工厂&#xff1a;AI&#xff08;AIGC/ChatGPT&#xff09;与流程式游戏开发》讨论之后就…

【软件建模与设计】-04-软件设计和体系结构概念

目录 1、类与对象 2、信息隐藏 2.1、示例 3、继承和泛化/特化 4、并发处理 4.1、并发对象间的协作 5、设计模式 6、软件体系结构和构件 7、软件质量属性 1、类与对象 一个对象是现实世界中物理的或概念的实体。 一个对象盖了数据(data)以及作用于数据之上的过程(pro…

缓存和数据库双写的四种策略分析

概述 缓存是提升系统性能的极为简便的手段之一。相较而言&#xff0c;数据库&#xff08;或者 NoSQL 数据库&#xff09;的运行速度较为迟缓&#xff0c;然而速度在很多时候却是决胜的关键要素。采用缓存能够降低响应时间、减轻数据库负载并且节约成本。 正因如此&#xff0c;往…

HTML2048小游戏

源代码在效果图后面 效果图 源代码 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>2048 Game&l…

银河麒麟搭建ftp服务器

1.先 查看系统架构&#xff0c;一般银河麒麟都是arrch64的 lscpu uname -a cat /etc/os-release 去下载对应版本的vsftp.rpm包和ftp包 Index of /NS/ (cs2c.com.cn) 1.安装rpm rpm -ivh *.rpm --nodeps --force #强制安装 2.修改配置文件 vi /etc/vsftpd/vsftpd.conf anon…

【STC89C51单片机】串口通信

【STC89C51单片机】串口通信 串口简介1. 串口接线方式2. 通信过程 相关寄存器1. SBUF&#xff08;Serial Buffer Register&#xff09;2. SCON&#xff08;Serial Control Register&#xff09;3. PCON&#xff08;Power Control Register&#xff09;4. TCON&#xff08;Timer…

北京青蓝智慧科技CCRC-DCO数据合规官:人工智能遭遇寒冬?

人工智能技术是否真正迈入了新纪元&#xff1f; 历史上&#xff0c;人工智能已经经历了多次起伏&#xff0c;每次都伴随着寒冷的冬天。 然而&#xff0c;为什么这一次的技术变革被看作是人类社会重大转型的关键节点呢&#xff1f;在CES 2024上&#xff0c;吴恩达和李飞飞预言了…

【HZHY-AI300G智能盒试用连载体验】RTC示例程序测试

本文首发于&#xff1a;【   】【HZHY-AI300G智能盒试用连载体验】 智能工业互联网网关 - 北京合众恒跃科技有限公司 - 电子技术论坛 - 广受欢迎的专业电子论坛! (elecfans.com) HZHY-AI300G智能盒默认的系统是Ubuntu&#xff0c;这样非常方便使用&#xff0c;接上USB键盘和…

开发一个自己的chrom插件

开发一个自己的chrom插件 一、创建一个文件夹 二、配置文件manifest.json 创建名字为&#xff1a;manifest.json的配置文件&#xff0c;模板如下&#xff1a; {"manifest_version": 3,"name": "Hello World Extension","version": …

如何防范场外个股期权的交易风险?

场外个股期权交易&#xff0c;作为金融衍生品市场的重要组成部分&#xff0c;为投资者提供了更为灵活和多样化的投资策略。然而&#xff0c;其高杠杆、高风险特性也使得投资者在追求高收益的同时&#xff0c;面临着较大的交易风险。为了有效防范这些风险&#xff0c;投资者需要…

生成式之CycleGAN图像风格迁移互换

模型介绍 CycleGAN是一种循环对抗生成网络&#xff0c;用于实现在没有配对示例的情况下学习将图像从一个域转换到另一个域的方法。它的重要应用领域是域迁移&#xff0c;即图像风格迁移。与之前的模型不同&#xff0c;CycleGAN不需要训练数据成对出现&#xff0c;因此可以实现…