十五、【机器学习】【监督学习】- 神经网络回归

系列文章目录

第一章 【机器学习】初识机器学习

第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression)

第三章 【机器学习】【监督学习】- 支持向量机 (SVM)

第四章【机器学习】【监督学习】- K-近邻算法 (K-NN)

第五章【机器学习】【监督学习】- 决策树 (Decision Trees)

第六章【机器学习】【监督学习】- 梯度提升机 (Gradient Boosting Machine, GBM)

第七章 【机器学习】【监督学习】-神经网络 (Neural Networks)

第八章【机器学习】【监督学习】-卷积神经网络 (CNN)

第九章【机器学习】【监督学习】-循环神经网络 (RNN)

第十章【机器学习】【监督学习】-线性回归

第十一章【机器学习】【监督学习】-局部加权线性回归 (Locally Weighted Linear Regression, LWLR)

第十二章【机器学习】【监督学习】- 岭回归 (Ridge Regression)

十三、【机器学习】【监督学习】- Lasso回归 (Least Absolute Shrinkage and Selection Operator)

十四、【机器学习】【监督学习】- 弹性网回归 (Elastic Net Regression)


目录

系列文章目录

一、基本定义

(一)、监督学习

(二)、监督学习的基本流程

(三)、监督学习分类算法(Classification)

二、 神经网络回归

(一)、定义

(二)、基本概念

(三)、训练过程

(四)、特点

(五)、适用场景

(六)、扩展

三、总结


前言

    在先前的文章系列中,我们深入探讨了机器学习的基础框架和算法分类,为读者构建了关于这一领域的坚实理论基础。本章节我们将焦点转向监督学习领域中的一个核心算法—— 神经网络回归,旨在详尽解析其内在逻辑、应用实践及重要参数调整策略。


一、基本定义

(一)、监督学习

        监督学习(Supervised Learning)是机器学习中的一种主要方法,其核心思想是通过已知的输入-输出对(即带有标签的数据集)来训练模型,从而使模型能够泛化到未见的新数据上,做出正确的预测或分类。在监督学习过程中,算法“学习”的依据是这些已标记的例子,目标是找到输入特征与预期输出之间的映射关系。

(二)、监督学习的基本流程

        数据收集:获取包含输入特征和对应正确输出标签的训练数据集。
        数据预处理:清洗数据,处理缺失值,特征选择与转换,标准化或归一化数据等,以便于模型学习。
        模型选择:选择合适的算法,如决策树、支持向量机、神经网络等。
        训练:使用训练数据集调整模型参数,最小化预测输出与实际标签之间的差距(损失函数)。
        验证与调优:使用验证集评估模型性能,调整超参数以优化模型。
        测试:最后使用独立的测试集评估模型的泛化能力,确保模型不仅在训练数据上表现良好,也能在未见过的新数据上做出准确预测。

(三)、监督学习分类算法(Classification)

        定义:分类任务的目标是学习一个模型,该模型能够将输入数据分配到预定义的几个类别中的一个。这是一个监督学习问题,需要有一组已经标记好类别的训练数据,模型会根据这些数据学习如何区分不同类别。
        例子:垃圾邮件检测(垃圾邮件 vs. 非垃圾邮件)、图像识别(猫 vs. 狗)。


二、 神经网络回归

(一)、定义

        神经网络回归(Neural Network Regression)是一种使用人工神经网络(Artificial Neural Networks, ANN)进行回归预测的机器学习技术。回归预测的任务是在给定输入特征的情况下,预测一个或多个连续数值的输出。神经网络回归模型通过学习输入与输出之间的复杂映射关系,来完成预测任务。

(二)、基本概念

        神经网络回归的基本组成部分包括输入层、一个或多个隐藏层和输出层。输入层接收原始特征数据,隐藏层负责提取和转换这些特征,以捕捉数据中的复杂模式,而输出层则生成最终的预测值。神经网络中的节点(或称神经元)通过加权连接彼此相连,这些权重在训练过程中会被调整以优化模型的预测能力。

(三)、训练过程

        神经网络回归的训练是一个迭代过程,其主要目标是调整网络中的权重和偏置,以最小化预测值与实际值之间的差异。下面是神经网络回归训练过程的详细步骤:

1. 数据准备
  • 数据清洗:去除无效或缺失值,处理异常值,确保数据的质量。
  • 特征工程:选择或构造对预测有帮助的特征,可能包括标准化、归一化、编码分类变量等。
  • 数据划分:将数据集分为训练集、验证集和测试集,训练集用于训练模型,验证集用于调整超参数,测试集用于最终评估模型性能。
2. 初始化网络
  • 定义网络结构:确定网络的层数、每层的神经元数量、激活函数等。
  • 初始化权重和偏置:使用随机初始化策略,如高斯分布或Xavier初始化,来设定初始权重和偏置。
3. 前向传播
  • 输入数据:将训练集中的输入数据传递给网络的输入层。
  • 计算输出:数据通过网络各层的计算,包括矩阵乘法、激活函数应用等,直到产生预测输出。
  • 损失计算:使用损失函数(如均方误差MSE、平均绝对误差MAE等)来衡量预测值与真实值之间的差异。
4. 反向传播
  • 梯度计算:根据损失函数,通过反向传播算法计算每个权重和偏置的梯度。
  • 权重更新:使用优化算法(如梯度下降、随机梯度下降SGD、Adam等),根据计算出的梯度来更新权重和偏置,以期望在下一个迭代中减小损失。
5. 迭代训练
  • 批量更新:通常,数据不是一次全部用于训练,而是分成若干批(batches),每批数据执行一次前向传播和反向传播,然后更新权重。
  • 训练轮数:训练过程会重复多次,直到达到预定的训练轮数(epochs)或满足某些停止条件,如损失不再显著减少。
6. 超参数调整
  • 学习率:调整学习率可以影响模型收敛的速度和效果。
  • 正则化:添加L1、L2正则化项可以防止过拟合。
  • 网络结构:尝试不同的层数和神经元数量,找到最适合当前问题的网络配置。
  • 激活函数:选择不同的激活函数,如ReLU、tanh、sigmoid等,可能会影响模型的表现。
7. 早停策略
  • 验证损失监测:在训练过程中,定期使用验证集评估模型,如果验证损失在一定轮数内没有改善,则提前终止训练,以防止过拟合。
8. 模型评估与部署
  • 测试集评估:在独立的测试集上评估模型的最终性能,确保模型的泛化能力。
  • 模型部署:将训练好的模型部署到实际应用中,如在线预测系统,以进行实时预测。
9. 后处理与解释
  • 结果解释:对于某些应用场景,可能需要对模型的预测结果进行解释,了解模型是如何做出预测的。
  • 不确定性估计:在某些情况下,可能还需要估计模型预测的不确定性,这对于风险评估和决策支持非常重要。

        整个训练过程是一个动态的、需要不断调整和优化的流程,涉及到对数据、模型结构、训练策略和评估标准的综合考量。通过细致的训练和调优,神经网络回归模型可以达到很高的预测精度,为各种预测任务提供有力的支持。

(四)、特点

        神经网络回归的特点不仅体现在其强大的预测能力上,还表现在其灵活性、适应性和潜在的局限性上。以下是神经网络回归的一些显著特点,这些特点使其在众多领域成为首选的预测模型:

  1. 非线性建模能力: 神经网络回归能够学习和表示极其复杂的非线性关系,这是传统线性回归模型所难以企及的。多层神经网络通过逐层抽象和变换输入数据,能够捕捉数据中的深层特征和模式,即使面对高维和非结构化的数据,也能有效地拟合数据。

  2. 自动特征学习: 神经网络的一个重要优点是能够自动学习和选择特征。通过隐藏层的激活函数,网络可以自动发现输入数据中对预测最有价值的部分,从而减少了手动特征工程的负担,提高了模型的通用性和效率。

  3. 适应性和泛化能力: 通过足够的训练数据和适当的正则化技术,神经网络回归模型能够适应新数据,具备良好的泛化能力。这意味着即使面对未见过的数据,模型也能做出合理的预测,这对预测模型来说是非常关键的属性。

  4. 模型灵活性: 神经网络回归的架构可以灵活调整,以适应不同规模和复杂度的问题。从简单的单层感知器到复杂的深度神经网络,模型的深度和宽度可以根据具体任务的需要进行调整。

  5. 处理高维数据: 在面对具有大量输入特征的数据集时,神经网络回归模型能够有效地进行降维和特征选择,避免维度灾难问题,这在生物信息学、图像识别、自然语言处理等领域尤为重要。

  6. 端到端学习: 神经网络回归可以实现从原始输入数据到最终预测值的端到端学习,减少了中间环节的误差累积,提高了预测的准确性和一致性。

  7. 模型可扩展性: 神经网络回归模型易于扩展,可以与卷积层、循环层、注意力机制等其他神经网络组件结合,以适应特定类型的数据,如图像、序列和文本数据。

  8. 并行计算能力: 神经网络回归的训练过程可以利用GPU和TPU等硬件加速,实现大规模数据的快速训练,这在大数据和云计算环境下尤为重要。

  9. 黑盒性质与可解释性挑战: 尽管神经网络回归模型具有强大的预测能力,但它们往往被视为“黑盒”模型,即内部运作机制复杂,不易直观理解。这可能会限制模型在某些需要高度透明度和可解释性的领域的应用,如医疗诊断和法律判决。

  10. 过拟合风险: 如果模型过于复杂或训练数据不足,神经网络回归模型可能会过度拟合训练数据,导致在新数据上的泛化性能下降。因此,正则化技术和足够的训练数据是避免过拟合的关键。

  11. 计算资源需求: 神经网络回归模型的训练和运行可能需要大量的计算资源,包括存储和计算能力,特别是在处理大规模数据集和深层网络架构时。

        神经网络回归模型因其独特的非线性建模能力、自动特征学习和适应性,成为解决复杂预测问题的强大工具。然而,它们的黑盒性质和潜在的过拟合风险也是在实际应用中需要谨慎考虑的因素。通过合理设计模型架构、采用正则化策略和充分利用计算资源,可以最大化神经网络回归的优势,克服其局限性。

(五)、适用场景

        神经网络回归由于其强大的非线性建模能力,可以广泛应用于多个领域。以下是一些具体的适用场景:

  1. 金融与经济预测

    • 股票市场预测:预测股票价格、收益率或者波动率。
    • 经济指标预测:如GDP增长率、失业率、通胀率等宏观经济指标的预测。
    • 风险管理:信用评分、违约概率预测等。
  2. 市场营销与销售预测

    • 销售量预测:基于历史销售数据预测未来的销售趋势。
    • 客户价值预测:预测客户未来一段时间内的消费金额,用于客户分层和个性化营销策略制定。
  3. 供应链管理

    • 库存需求预测:预测库存水平,以优化补货周期和库存成本。
    • 供应商绩效预测:预测供应商交货时间和质量表现,优化供应链管理。
  4. 能源与环境科学

    • 天气预报:预测温度、湿度、风速等气象参数。
    • 能源需求预测:预测电力消耗、天然气使用量等,用于能源调度和规划。
  5. 医疗健康

    • 疾病预测:预测疾病的发展趋势,如肿瘤生长速度、糖尿病并发症发生率。
    • 药物剂量预测:根据患者个体特征预测药物的最佳剂量。
    • 生物标记物预测:预测血液或其他生物样本中的特定标记物浓度。
  6. 交通与物流

    • 交通流量预测:预测道路上的车辆数量,帮助城市交通规划。
    • 运输需求预测:预测航空、铁路、海运等运输方式的需求量。
  7. 农业与食品工业

    • 农作物产量预测:预测农作物的产量,帮助农民做出种植决策。
    • 食品保鲜期预测:预测食品的保质期,减少浪费。
  8. 信息技术与互联网

    • 用户行为预测:预测用户在线活动,如浏览、购买、订阅等行为。
    • 网络性能预测:预测网络延迟、带宽使用情况等,用于网络优化。
  9. 制造业与工程

    • 设备故障预测:预测设备的潜在故障,实现预防性维护。
    • 制造工艺优化:预测制造过程中的关键参数,如温度、压力等,以优化生产效率。
  10. 房地产与建筑

    • 房价预测:基于地理位置、房屋特征等因素预测房产价值。
    • 建筑能耗预测:预测建筑物的能源消耗,用于节能设计和运营。
  11. 教育与人力资源

    • 学生表现预测:预测学生的学习成绩,帮助教师个性化教学。
    • 人才招聘预测:预测求职者的工作表现和离职可能性。
  12. 娱乐与媒体

    • 观众收视率预测:预测电视节目、电影的受欢迎程度。
    • 音乐偏好预测:预测听众对音乐的喜好,用于个性化推荐系统。

        神经网络回归的适用场景几乎覆盖了所有行业和领域,只要存在连续数值型的预测需求,神经网络回归都可能成为一个有力的工具。随着技术的进步,神经网络模型的准确性和效率不断提高,它们在实际应用中的作用也日益凸显。

(六)、扩展

        神经网络回归可以扩展和改进,以适应不同类型的回归问题和特定领域的应用:

  • 深度神经网络:增加隐藏层数量可以提高模型的表达能力和对复杂数据结构的拟合能力。
  • 卷积神经网络(CNN):适用于图像、音频和视频等数据,其中卷积层可以捕捉局部特征和空间层次结构。
  • 循环神经网络(RNN):适用于序列数据,如时间序列预测、语音识别和自然语言处理,RNN能够处理序列中的依赖关系。
  • 长短时记忆网络(LSTM)和门控循环单元(GRU):改进的RNN类型,能够更好地处理长期依赖问题。
  • 量化回归神经网络(QRNN):用于估计输出的条件分布,而不仅仅是单一的预测值,适用于金融风险评估等领域。

三、总结

        神经网络回归是现代机器学习中非常强大的工具,通过灵活的架构和训练机制,它可以解决广泛的回归问题,并在许多领域展现出卓越的预测性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3247116.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

RPA鼠标按键使用技巧

RPA鼠标按键使用技巧 Mouse.MouseAuto.Action命令出错,调用的目标发生了异常,Exception in Mouse.Action元素不可用怎么解决 出现问题 1.想要实现的效果鼠标移动到录屏工具的小球上2.点击开始按钮开始录屏现象,鼠标没有移动痕迹&#xff0c…

C1W4.Assignment.Naive Machine Translation and LSH

理论课:C1W4.Machine Translation and Document Search 文章目录 1. The word embeddings data for English and French words1.1The dataThe subset of dataLoad two dictionaries 1.2 Generate embedding and transform matricesExercise 1: Translating English…

华为的热机备份和流量限制

要求: 12,对现有网络进行改造升级,将当个防火墙组网改成双机热备的组网形式,做负载分担模式,游客区和DMZ区走FW4,生产区和办公区的流量走FW5 13,办公区上网用户限制流量不超过100M,…

智慧博物馆的“眼睛”:视频智能监控技术守护文物安全与智能化管理

近日,位于四川德阳的三星堆博物馆迎来了参观热潮。据新闻报道,三星堆博物馆的日均参观量达1.5万人次。随着暑假旅游高峰期的到来,博物馆作为重要的文化场所,也迎来了大量游客。博物馆作为文化和历史的重要载体,其安全保…

QT应用编程: window下QT程序异常捕获并生成DMP文件、PDB文件

文章目录 main.cpp代码捕获异常 生成dmp文件和pdb文件DebugTest生成错误代码注意 分析软件崩溃,除了需要dmp,还需要这个pdb文件 dmp,文件记录了崩溃的信息,而pdb(代码工程数据库),则包含了你写的…

全局 loading

好久不见! 做项目中一直想用一个统一的 loading 状态控制全部的接口加载,但是一直不知道怎么处理,最近脑子突然灵光了一下想到了一个办法。 首先设置一个全局的 loading 状态,优先想到的就是 Pinia 然后因为页面会有很多接口会…

AI软件小说推文直接生成漫画短视频,小说推广项目的辅助工具,前端uniapp。

有哪些AI的软件是比较热门的? 以下是一些常用的网页AI软件,可以用于绘图: Canva:Canva是一个非常受欢迎的网页平台,提供各种图形设计和绘图工具。它具有易于使用的界面和大量的模板和元素,可以帮助你创建出…

Qt 使用Installer Framework制作安装包

Qt 使用Installer Framework制作安装包 引言一、下载安装 Qt Installer Framework二、简单使用2.1 创建目录结构 (文件夹结构)2.2 制作程序压缩包2.3 制作程序安装包 引言 Qt Installer Framework (安装程序框架)是一个强大的工具集,用于创建自定义的在线和离线安装…

【网络安全】PostMessage:分析JS实现XSS

未经许可,不得转载。 文章目录 前言示例正文 前言 PostMessage是一个用于在网页间安全地发送消息的浏览器 API。它允许不同的窗口(例如,来自同一域名下的不同页面或者不同域名下的跨域页面)进行通信,而无需通过服务器…

【线程系列之五】线程池介绍C语言

一、基本概念 1.1 概念 线程池(Thread Pool)是一种基于池化技术管理线程的机制,旨在减少线程创建和销毁的开销,提高系统资源的利用率,以及更好地控制系统中同时运行的线程数量。线程池通过预先创建一定数量的线程&am…

Qt模型/视图架构——委托(delegate)

一、为什么需要委托 模型(model)用来数据存储,视图(view)用来展示数据。因此,模型/视图架构是一种将数据存储和界面展示分离的编程方法。具体如下图所示: 由图可知,模型向视图提供数…

Python | Leetcode Python题解之第238题除自身以外数组的乘积

题目: 题解: class Solution:def productExceptSelf(self, nums: List[int]) -> List[int]:length len(nums)# L 和 R 分别表示左右两侧的乘积列表L, R, answer [0]*length, [0]*length, [0]*length# L[i] 为索引 i 左侧所有元素的乘积# 对于索引为…

一文掌握Prometheus实现页面登录认证并集成grafana

一、接入方式 以保护Web站点的访问控制,如HTTP 服务器配置中实现安全的加密通信和身份验证,保护 Web 应用程序和用户数据的安全性。 1.1 加密密码 通过httpd-tools工具包来进行Web站点加密 yum install -y httpd-tools方式一:通过htpasswd生…

人工智能 (AI) 应用:一个异常肺呼吸声辅助诊断系统

关键词:深度学习、肺癌、多标签、轻量级模型设计、异常肺音、音频分类 近年来,流感对人类的危害不断增加,COVID-19疾病的迅速传播加剧了这一问题,导致大多数患者因呼吸系统异常而死亡。在这次流行病爆发之前,呼吸系统…

【时时三省】(C语言基础)变量

山不在高,有仙则名。水不在深,有龙则灵。 ——csdn时时三省 变量 可以改变的量 比如 int age=20 (类型 变量的名字=0) 如果后面要改可以直接代入 age=age1 age可以是任何字母 变量的分类…

微信小游戏 彩色试管 倒水游戏 逻辑 (四)

最近开始研究微信小游戏,有兴趣的 可以关注一下 公众号, 记录一些心路历程和源代码。 定义了一个名为 WaterFlow class,该类继承自 cc.Graphics,用于在 Cocos Creator 中创建和显示水流的动画效果。下面是对代码的详细解释&#x…

Qt实现简单的导航进度条——自定义控件

导航进度条通过其动态的视觉效果,‌不仅提供了任务进度的实时反馈,‌还增强了用户体验的流畅性和直观性。‌“进度”的设计方式多种多样,不同种类的运用需要根据具体场景来规划具体的进度方式,一般都要在清楚了解了每个方式的设计…

MySQL数据库慢查询日志、SQL分析、数据库诊断

1 数据库调优维度 业务需求:勇敢地对不合理的需求说不系统架构:做架构设计的时候,应充分考虑业务的实际情况,考虑好数据库的各种选择(读写分离?高可用?实例个数?分库分表?用什么数据库?)SQL及索引:根据需求编写良…

JavaEE--JavaWeb服务器的安装配置(Tomcat服务器安装配置)

前言: 本文介绍了 Java Web 服务器 Tomcat 的安装配置,并详细说明了如何在 IntelliJ IDEA 中配置服务器,创建 JavaEE 项目,并发布文章。文章首先解释了前端程序如何访问后端程序以及 Web 服务器的概念,然后详细介绍了安装 Tomcat…

各地跨境电子商务示范区工具变量DID数据(2010-2022年)

数据来源:参考李震等(2023)的做法,从官方网站上搜集整理了我国跨境电子商务示范区名单与上市公司进行匹配制作。时间跨度:2010-2022年数据范围:上市企业包含指标: stock year 证券简称 In…