使用windows批量解压和布局ImageNet ISLVRC2012数据集

使用的系统是windows,找到的解压命令很多都linux系统中的,为了能在windows系统下使用,因此下载Git这个软件,在其中的Git Bash中使用以下命令,因为Git Bash集成了很多linux的命令,方便我们的使用。

ImageNet 中目前共有 14,197,122 幅图像,总共分为 21,841 个类别(synsets),通常我们所说的 ImageNet 数据集其实是指 ISLVRC2012 比赛用的子数据集,其中 train 有 1,281,167 张照片和标签,共 1000 类,大概每类 1300 张图片,val 有 50,000 副图像,每类 50 个数据,test 有 100,000 副图片,每类 100 个数据。

比赛分为三个场景:图像分类(CLS)、目标定位(LOC)和目标检测(DET)。CLS:2010-2014 比赛中独立任务,2015 年与 LOC 合并,使用 top5。LOC:从 2011 年开始,2015 年与 CLS 合并为 CLS-LOC,单目标定位任务的数据与 CLS 任务包含相同的照片,照片数据手动标注图像是否存在 1000 个物体类别之一的实例,每张图片包含一个 gt 标签,该类别的每个实例都标注了边界框 bounding box,比赛中 IoU>0.5。

1.数据集下载:(一个大佬的链接)

  • 训练集:ILSVRC2012_img_train.tar.gz,提取码:yoos;
  • 验证集:ILSVRC2012_img_val.tar.gz,提取码:yl8m;
  • 测试集:ILSVRC2012_img_test.tar.gz,提取码:jumt;
  • 任务 1&2 的 devkit:ILSVRC2012_devkit_t12.tar,提取码:dw6i;

2. 数据解压

我们会得到训练集与验证集的两个压缩包,分别是 ILSVRC2012_img_train.tar 和 ILSVRC2012_img_val.tar

数据集布局要求是:

/path/to/imagenet/train/class1/img1.jpegclass2/img2.jpegval/class1/img3.jpegclass2/img4.jpeg

首先创建两个用于放训练集和测试集的文件夹,然后解压:

(1)解压训练集

右键对训练集选择Git Bash Here

三行命令逐行输入进Git Bash Here窗口中:

mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
cd ..

结果如下:

(2)解压测试集
wget https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.shmkdir val && tar -xvf ILSVRC2012_img_val.tar -C val && mv valprep.sh val && cd val && bash valprep.sh

下载的valprep.sh文件在外网(valprep.sh文件中保存的就是图片按类生成文件夹的布局),或者可以直接迅雷链接,将下载后的文件放入和验证集压缩包同一文件夹下,这样直接在Git Bash Here窗口使用第二个命令就可以完成解压。(也是一个大佬的链接)

链接:https://pan.xunlei.com/s/VMkus56ePQ4LMJUIXheBkhXSA1 提取码:k9ej
或者利用python解压测试集:

【点击下载验证集标签】
对于训练集,不同类别的数据躺在不同的文件夹里,用起来很方便(同一文件夹的视为一类)。但是验证集没有对应的标签,需要额外处理。

验证集的标签在 Development kit (文件名为 ILSVRC2012_devkit_t12.tar.gz)中的ILSVRC2012_devkit_t12\data\ILSVRC2012_validation_ground_truth.txt 中:

在映射关系储存在和txt文件同目录下的 meta.mat 文件中。我们希望验证集的文件结构长得和训练集一样,即 :

/val
/n01440764
images
/n01443537
images

解压完压缩包后:新建python文件:

from scipy import io
import os
import shutildef move_valimg(val_dir='./val', devkit_dir='./ILSVRC2012_devkit_t12'):"""move valimg to correspongding folders.val_id(start from 1) -> ILSVRC_ID(start from 1) -> WINDorganize like:/val/n01440764images/n01443537images....."""# load synset, val ground truth and val images listsynset = io.loadmat(os.path.join(devkit_dir, 'data', 'meta.mat'))ground_truth = open(os.path.join(devkit_dir, 'data', 'ILSVRC2012_validation_ground_truth.txt'))lines = ground_truth.readlines()labels = [int(line[:-1]) for line in lines]root, _, filenames = next(os.walk(val_dir))for filename in filenames:# val image name -> ILSVRC ID -> WINDval_id = int(filename.split('.')[0].split('_')[-1])ILSVRC_ID = labels[val_id-1]WIND = synset['synsets'][ILSVRC_ID-1][0][1][0]print("val_id:%d, ILSVRC_ID:%d, WIND:%s" % (val_id, ILSVRC_ID, WIND))# move val imagesoutput_dir = os.path.join(root, WIND)if os.path.isdir(output_dir):passelse:os.mkdir(output_dir)shutil.move(os.path.join(root, filename), os.path.join(output_dir, filename))if __name__ == '__main__':move_valimg()

3. 预处理Crop & Resize

数据集在扔给网络模型做训练前还需要统一尺寸处理,一方面是 CNN 需要统一尺寸的输入,另一方面是可以有数据增强的效果。一般来说有 crop 和 resize 两个过程。

其中 crop 的方法有 single crop 和 multiple crops 两种:

  • single crop:先将图像 resize 到某个尺度,例如:256 x N(短边为256),然后 centercrop 成 224x224 作为模型的输入;
  • multiple crops 的具体形式有多种,可自行指定,比如:1)10 crops:取(左上,左下,右上,右下,正中)以及它们的水平翻转,这 10 个 crops 作为 CNN 输入,最终取平均预测结果;2)144 crops:首先将图像 resize 到 4 个尺度:256xN,320xN,384xN,480xN,然后每个尺度上去取“最左”,“正中”,“最右”这 3 个位置的正方形区域,对每个正方形区域,取上述的 10 个 224x224 的 crops,则得到 4x3x10=120 个 crops,再对上述正方形区域直接 resize 到 224x224,以及做水平翻转,则又得到 4x3x2=24 个 crops,总共加起来就是 144 个 crops,输入到网络最后取平均预测结果

4.  用Pytorch加载

使用 torchvision.datasets.ImageFolder() 就可以直接加载处理好的数据集啦!

  • 
    def load_ImageNet(ImageNet_PATH, batch_size=64, workers=3, pin_memory=True): traindir = os.path.join(ImageNet_PATH, 'ILSVRC2012_img_train')valdir   = os.path.join(ImageNet_PATH, 'ILSVRC2012_img_val')print('traindir = ',traindir)print('valdir = ',valdir)normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])train_dataset = datasets.ImageFolder(traindir,transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),normalizer]))val_dataset = datasets.ImageFolder(valdir,transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),normalizer]))print('train_dataset = ',len(train_dataset))print('val_dataset   = ',len(val_dataset))train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=workers,pin_memory=pin_memory,sampler=None)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=batch_size,shuffle=False,num_workers=workers,pin_memory=pin_memory)return train_loader, val_loader, train_dataset, val_dataset

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3246909.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

set类和map类介绍和简单使用

目录 set类介绍与简单使用 set类 multiset类 map类介绍与简单使用 map类 multimap类 set类介绍与简单使用 set类是一种关联式容器,在数据检索时比序列式容器效率更高。本质是一个常规的二叉搜索树,但是为了防止出现单支树导致效率下降进行了相关优…

Linux 命令 —— top命令(查看进程资源占用)

文章目录 top 命令显示信息介绍top 命令使用 top 命令显示信息介绍 top 命令是 Linux/Unix 系统中常用的进程监控工具,可以实时动态显示系统中各个进程的资源占用情况,包括CPU、内存等。 进入 linux 系统,直接输入 top,回车&…

2014-2024年腾势D9N7N8EVDMI维修手册和电路图资料线路图接线图

经过整理,2014-2024年腾势汽车全系列已经更新至汽修帮手资料库内,覆盖市面上99%车型,包括维修手册、电路图、新车特征、车身钣金维修数据、全车拆装、扭力、发动机大修、发动机正时、保养、电路图、针脚定义、模块传感器、保险丝盒图解对照表…

中国星坤X0800HI系列线对板连接器:创新技术连接,引领智能家居未来!

近日,中国星坤推出的X0800HI系列线对板连接器,凭借其独特的设计和卓越的性能,引起了业界的广泛关注。 X0800HI系列线对板连接器在极小空间内实现了线对板的W-B连接,这不仅解决了传统连接方式中剥线和焊接的繁琐步骤,还…

Seata源码分析 全局事务开启提交回滚流程

文章目录 Seata全局事务源码Seata AT模式的设计思路源码入口TransactionalTemplate开启全局事务TM开启全局事务TC处理TM的请求 全局事务提交微服务端TM发送请求TC处理TM的请求RM处理TC的请求 全局事务回滚TM发送请求TC处理TM的请求RM处理TC的请求 补充知识微服务怎么找TC服务 S…

配置三层链路聚合增加链路带宽并提高可靠性的示例

规格 适用于所有版本的AR路由器。 AR161、AR161W、AR169、AR161G-L不支持该示例。 组网需求 在某小型企业网环境中部署了两台AR路由器Router_1和Router_2,Router_1作为用户接入设备,Router_2作为网络接入设备。为了保证用户的带宽,当用户量…

【Kaggle】练习赛《保险交叉销售的二分类预测》

前言 本篇文章介绍的是Kaggle月赛《Binary Classification of Insurance Cross Selling》,即《保险交叉销售的二元分类预测》。这场比赛非常适合作为机器学习入门者的实践练习。在之前的几期练习赛中,我们从多个角度详细讲解了探索性数据分析&#xff0…

爆火出圈的Robotaxi,会是自动驾驶的最优解吗?

八年前,百度决定投资无人驾驶时,李彦宏说:“它是人工智能最顶级的工程,将彻底改变人类的出行和生活。” 八年后,萝卜快跑从理想变成现实,奔跑在全国各地的街头,诠释了什么叫“科技不该高高在上…

2.javaWeb_请求和响应的处理(Request,Response)

2.请求和响应的处理 文章目录 2.请求和响应的处理一、动态资源和静态资源javax.servlet(包) 二、Servlet体系1.简介2.HttpServlet3.Servlet生命周期 三、Request对象1.ServletRequest1)ServletRequest主要功能有:2)ServletRequest类的常用方法: 2.HttpServletReques…

72B大模型分片部署

一、定义 目的官方教程案例小模型修改device_map 方式二 二、实现 目的: 将72B大模型 部署到2张gpu 显卡中。官方教程 帖子:https://huggingface.co/blog/accelerate-large-models实现 1. 自动部署 model AutoModelForCausalLM.from_pretrained(mod…

JUC 包中的 Atomic 原子类总结

人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…

【Java数据结构】初始线性表之一:链表

为什么要有链表 上一节我们描述了顺序表:【Java数据结构】初识线性表之一:顺序表-CSDN博客 并且进行了简单模拟实现。通过源码知道,ArrayList底层使用数组来存储元素。 由于其底层是一段连续空间,当在ArrayList任意位置插入或者…

Linux shell编程学习笔记64:vmstat命令 获取进程、内存、虚拟内存、IO、cpu等信息

0 前言 在系统安全检查中,通常要收集进程、内存、IO等信息。Linux提供了功能众多的命令来获取这些信息。今天我们先研究vmstat命令。 1.vmstat命令的功能、用法、选项说明和注意事项 1.1 vmstat命令的功能 vmstat是 Virtual Meomory Statistics(虚拟内…

4.作业--Jquery,JS

目录 作业题目:1.使用Jquery完成点击图片变换图片颜色 A图 B代码 HTML的部分 JQ的部分 作业题目:2.使用JS中的DOM操作完成背景颜色渐变方向变换。点击背景,渐变方向发生改变。 A图 B代码 学习产出: 作业题目:1…

封装网络请求 鸿蒙APP HarmonyOS ArkTS

一、效果展示 通过在页面直接调用 userLogin(params) 方法,获取登录令牌 二、申请网络权限 访问网络时候首先需要申请网络权限,需要修改 src/main 目录下的 module.json5 文件,加入 requestPermissions 属性,详见官方文档 【声明权…

深度学习Week20——Pytorch实现残差网络和ResNet50V2算法

文章目录 深度学习Week20——Pytorch实现残差网络和ResNet50V2算法 一、前言 二、我的环境 三、代码复现 3.1 配置数据集 3.2 构建模型 四、模型应用与评估 4.1 编写训练函数 4.2 编写测试函数 4.3 训练模型 4.4 结果可视化 一、前言 🍨 本文为🔗365天深…

昇思25天学习打卡营第 12 天 | mindspore 实现 ResNet50 图像分类

1. 背景: 使用 mindspore 学习神经网络,打卡第 12 天;主要内容也依据 mindspore 的学习记录。 2. ResNet 介绍: mindspore 实现 ResNet50 图像分类; ResNet 基本介绍: Residual Networks 是微软研究院 K…

港股指数实时行情API接口

港股 指数 实时 行情 API接口 # Restful API https://tsanghi.com/api/fin/index/HKG/realtime?token{token}&ticker{ticker}指定指数代码,获取该指数的实时行情(开、高、低、收、量)。 更新周期:实时。 请求方式&#xff1a…

GuLi商城-商品服务-API-属性分组-分组修改级联选择器回显

前端代码:略 后端回显接口: 递归方法: @Override publi

linux进程——父子进程层面的PID,fork的原理与理解

前言:本篇内容主要讲解进程中系统调用fork和父子进程的概念与原理, 想要系统学习linux进程的友友们只管看本篇文章是不行的。 还要学习一些linux进程的周边知识以及linux进程其他方面的知识,博主的linux专栏中已经加入了这些文章方便友友们进…