【C++】拷贝构造函数及析构函数

📢博客主页:https://blog.csdn.net/2301_779549673
📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
📢本文由 JohnKi 原创,首发于 CSDN🙉
📢未来很长,值得我们全力奔赴更美好的生活✨

在这里插入图片描述

在这里插入图片描述

文章目录

  • 📢前言
  • 🏳️‍🌈什么是拷贝构造函数
    • ❤️1. 引用传参
    • 🧡2. 自动生成的拷贝构造函数
  • 🏳️‍🌈什么是析构函数
  • 👥总结


📢前言

当谈论C++编程语言的核心概念时,拷贝构造函数析构函数无疑是不可或缺的话题。它们不仅仅是理解对象生命周期和内存管理的关键,更是构建复杂系统和高效程序的基础。拷贝构造函数在对象复制过程中扮演着关键角色,决定了如何正确地复制对象的状态和数据。而析构函数则负责在对象生命周期结束时释放资源,确保程序运行的稳定性和性能。

在本博客系列中,我们将深入探讨C++中拷贝构造函数和析构函数的实现原理、使用场景以及最佳实践。我们将从基础知识入手,逐步扩展到高级应用和实际案例分析,帮助读者建立起对这两个重要概念的全面理解和应用能力。无论您是刚入门的初学者,还是希望深化专业知识的资深开发者,本系列都将为您提供有价值的内容和实用的技能,助力您在C++编程的道路上更进一步。让我们一起探索C++世界中的拷贝构造函数和析构函数,发现它们的力量和魅力!


🏳️‍🌈什么是拷贝构造函数

什么是拷贝构造函数
如果已经存在一个对象,我想对这个对象再复制一份,该怎么做呢?

有两种方法拷贝构造赋值运算符重载·,但显然赋值运算符重载不是这里的重点,这里要讲的是前者。至于后者笔者后续再补充。

拷贝构造函数是类的六大特殊成员函数之一,它是构造函数的一个重载形式

而且由于拷贝并不需要改变参数,所以参数部分还要用 “const”来修饰。

比如下面这样一个类

#include<iostream>
using namespace std;
class Date
{
public:Date(int year = 1, int month = 1, int day = 1){_year = year;_month = month;_day = day;}void Print(){cout << _year << "/" << _month << "/" << _day << endl;}private:int _year;int _month;int _day;
};

那么它的拷贝构造函数就可以写成这样

	//拷贝构造函数Date(const Date& d){_year = d._year;_month = d._month;_day = d._day;}

❤️1. 引用传参

拷贝构造函数的参数只有一个且必须是类类型对象的引用,使用传值方式编译器直接报错,因为语法逻辑上会引发无穷递归调用。

因为传值传参是一种拷贝,每次拷贝时又需要先传值传参,就会导致无限递归,导致程序崩溃

在这里插入图片描述
顺便提一下传值返回的注意点

传值返回会产生一个临时对象调用拷贝构造,传值引用返回,返回的是返回对象的别名(引用),没有产生拷贝。这种方式避免了额外的拷贝开销,提升了性能。然而,如果返回的对象是函数内部的局部对象,函数结束时该对象的生命周期也随之结束,引用返回就会出现问题,因为引用将指向一个已经销毁的对象,类似于野指针的问题。

为了避免这种情况,需要注意以下几点:

  • 如果函数返回一个对象,且希望通过引用返回以避免拷贝开销,确保返回的对象是通过 new 创建的(即动态分配内存),这样它的生命周期不会受到函数作用域的限制。
  • 对于本地(即函数内部定义的)局部对象,不应该使用引用返回,因为这些对象在函数结束时会被销毁。在这种情况下,应该选择传值返回或者返回一个静态或全局对象,确保返回的对象在函数结束后仍然有效。

因此,在选择传值返回还是传引用返回时,必须根据返回对象的生命周期来进行合理的选择,以确保程序的正确性和性能的最优化。

🧡2. 自动生成的拷贝构造函数

在C++中,如果您没有显式定义拷贝构造函数,编译器将自动生成一个默认的拷贝构造函数。这个自动生成的拷贝构造函数执行的是浅拷贝,即简单地复制对象的每个成员变量的值,即一个一个字节地复制。这种行为对于大多数简单的类和结构体是合适的,可以有效地复制对象的状态。

自动生成的拷贝构造函数在以下情况下会被调用:

对象初始化:使用一个对象初始化另一个对象时,例如 ClassName obj1 = obj2;,编译器会调用自动生成的拷贝构造函数。

对象传递:将对象作为参数传递给函数,或从函数返回对象时,编译器也会使用拷贝构造函数来创建对象的副本。

尽管自动生成的拷贝构造函数对于许多情况都能正常工作,但在某些情况下可能需要显式地定义自定义的拷贝构造函数,特别是当类包含指针动态分配的资源时,以确保正确的深拷贝行为和资源管理。

就比如的创建往往是要动态内存开辟

typedef int STDataType;
class Stack
{
public:Stack(int n = 4){_a = (STDataType*)malloc(sizeof(STDataType) * n);if (nullptr == _a){perror("malloc申请空间失败");return;}_capacity = n;_top = 0;}//拷贝函数Stack(const Stack& st){_a = (STDataType*)malloc(sizeof(STDataType) * st._capacity);if (nullptr == _a){perror("malloc申请空间失败");return;}memcpy(_a, st._a, sizeof(STDataType) * st._top);_top = st._top;_capacity = st._capacity;}void Push(STDataType x){if (_top == _capacity){int newcapacity = _capacity * 2;STDataType* tmp = (STDataType*)realloc(_a ,sizeof(STDataType) * newcapacity);if (nullptr == tmp){perror("malloc申请失败");return;}_a = tmp;_capacity = newcapacity;}_a[_top++] = x;}private:STDataType* _a;size_t _capacity;size_t _top;
};

🏳️‍🌈什么是析构函数

析构函数(Destructor 是面向对象编程中的一个概念,它是一种特殊的成员函数,用于在对象生命周期结束时执行清理工作和资源释放操作。在许多编程语言中,包括C++和一些类似的语言,析构函数在对象销毁时自动被调用

在C++中,析构函数的名称与类名相同,但前面加上一个波浪号(~)。它没有参数,不返回任何值,也没有返回类型。析构函数的作用是在对象销毁时自动执行一些必要的清理步骤,如释放动态分配的内存、关闭文件、释放资源等。

比如说下面这就是一个基本的析构函数

#include <iostream>class MyClass {
public:// 构造函数MyClass() {std::cout << "构造函数被调用" << std::endl;}// 析构函数~MyClass() {std::cout << "析构函数被调用" << std::endl;}
};int main() {MyClass obj; // 创建对象// 在main函数结束时,对象obj将销毁,析构函数会被自动调用return 0;
}

但是在C++中,如果您没有显式定义析构函数,编译器将自动生成一个默认的析构函数。这个自动生成的析构函数会依次销毁对象的每个成员变量,释放它们占用的内存空间。这对于大多数简单的类和结构体来说通常是合适的,因为它确保对象在生命周期结束时能够正确地释放资源。

自动生成的析构函数在以下情况下会被调用:

  • 对象离开作用域:当对象的作用域结束时,比如一个局部变量超出其作用域范围。
  • 动态分配的对象:如果对象是通过 new 运算符动态分配的,那么在调用 delete 释放内存时,也会自动调用析构函数。

尽管默认的析构函数对于大多数情况都能正常工作,但在涉及到动态分配的资源管理、对象组合等复杂情况下,可能需要显式定义自定义的析构函数。这样可以确保在对象销毁时执行额外的清理工作,如释放动态分配的内存或关闭文件等操作,以防止资源泄漏和程序错误。因此,了解和利用析构函数的自动生成特性对于C++程序的健壮性和性能优化至关重要。

就比如说下面这一块栈的析构函数,因为动态开辟了,所以需要手动释放空间,故要自定义析构函数

typedef int STDataType;
class Stack
{
public:Stack(int n = 4){_a = (STDataType*)malloc(sizeof(STDataType) * n);if (nullptr == _a){perror("malloc申请空间失败");return;}_capacity = n;_top = 0;}//拷贝函数Stack(const Stack& st){_a = (STDataType*)malloc(sizeof(STDataType) * st._capacity);if (nullptr == _a){perror("malloc申请空间失败");return;}memcpy(_a, st._a, sizeof(STDataType) * st._top);_top = st._top;_capacity = st._capacity;}void Push(STDataType x){if (_top == _capacity){int newcapacity = _capacity * 2;STDataType* tmp = (STDataType*)realloc(_a ,sizeof(STDataType) * newcapacity);if (nullptr == tmp){perror("malloc申请失败");return;}_a = tmp;_capacity = newcapacity;}_a[_top++] = x;}//析构函数~Stack(){//cout << "~Stack()" << endl;free(_a);_a = nullptr;_top = _capacity = 0;}
private:STDataType* _a;size_t _capacity;size_t _top;
};

👥总结

本篇博文对 拷贝构造函数及析构函数 做了一个较为详细的介绍,不知道对你有没有帮助呢

觉得博主写得还不错的三连支持下吧!会继续努力的~

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3246848.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

嵌入式Linux:文件属主和属组

目录 1、修改文件所有者和组 2、chown函数 3、fchown函数 4、lchown函数 在Linux系统中&#xff0c;每个文件都有一个属主&#xff08;owner&#xff09;和一个属组&#xff08;group&#xff09;。文件权限系统根据这些信息来决定哪些用户和组可以访问和操作文件。 文件属…

简单爬虫案例

准备工作&#xff1a; 1. 安装好python3 最低为3.6以上&#xff0c; 并成功运行pyhthon3 程序 2. 了解python 多进程原理 3. 了解 python HTTP 请求库 requests 的基本使用 4. 了解正则表达式的用法和python 中 re 库的基本使用 爬取目标 目标网站&#xff1a; https://…

【C++】类和对象的基本概念与使用

本文通过面向对象的概念以及通俗易懂的例子介绍面向对象引出类和对象。最后通过与之有相似之处的C语言中的struct一步步引出C中的类的定义方式&#xff0c;并提出了一些注意事项&#xff0c;最后描述了类的大小的计算方法。 一、什么是面向对象&#xff1f; 1.面向对象的概念 …

CH390H+STM32F1+LWIP

文章目录 1、CH390芯片介绍2、电路部分3、LWIP调试3.1修改点13.2 修改点2 4、结果展示参考 1、CH390芯片介绍 官网地址&#xff1a; 南京沁恒微电子股份有限公司 特点&#xff1a; 2、电路部分 CH390及接口&#xff1a; STM32F1引脚&#xff1a; 不含LWIP的demo及LWIP…

vue3+ts 封装echarts,根据tabs切换展示

<div class"bottom"><div class"topli"><p>用电统计</p><div class"tabs"><div class"tab" :class"{ active: active.tab1 index }"v-for"(item, index) in tabsList1" :key&q…

Pikachu SQL注入训练实例

1 数字类型注入 打开Burp Suit工具&#xff0c;选择Proxy&#xff0c;之后点击Open Browser打开浏览器&#xff0c;在浏览器中输入http://localhost:8080/pikachu-master打开Pikachu漏洞练习平台。 选择“数字型注入”&#xff0c;之后点击下拉框随便选择一个ID&#xff0c;…

Apple Vision Pro 和其商业未来

机器人、人工智能相关领域 news/events &#xff08;专栏目录&#xff09; 本文目录 一、Vision Pro 生态系统二、Apple Vision Pro 的营销用例 随着苹果公司备受期待的进军可穿戴计算领域&#xff0c;新款 Apple Vision Pro 承载着巨大的期望。 苹果公司推出的 Vision Pro 售…

测试——进阶篇

内容大纲: 软件测试的各种技术 1. 按照测试对象划分 1.1 界面测试 内容: 验证界面内容显示的完整性&#xff0c;一致性&#xff0c;准确性&#xff0c;友好性。比如界面内容对屏幕大小的自适应&#xff0c;换行&#xff0c;内容是否全部清晰展示&#xff1b;验证整个界面布局…

SAP ABAP性能优化分析工具

SAP系统提供了许多性能调优的工具&#xff0c;重点介绍下最常用几种SM50, ST05, SAT等工具&#xff1a; 1.工具概况 1.1 SM50 / SM66 - 工作进程监视器 通过这两个T-code, 可以查看当前SAP AS实例上面的工作进程&#xff0c;当某一工作进程长时间处于running的状态时&#…

AI 大事件:超级明星 Andrej Karpathy 创立AI教育公司 Eureka Labs

&#x1f9e0; AI 大事件&#xff1a;超级明星 Andrej Karpathy 创立AI教育公司 Eureka Labs 摘要 Andrej Karpathy 作为前 OpenAI 联合创始人、Tesla AI 团队负责人&#xff0c;他的专业性和实力备受瞩目。Karpathy 对 AI 的普及和教育充满热情&#xff0c;从 YouTube 教程到…

【C++报错已解决】 “Use of Uninitialized Variable“

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 引言 在编程过程中&#xff0c;遇到 “Use of Uninitialized Variable” 报错可能会让人感到困惑。这个错误提示通常意味着你尝…

【BUG】已解决:ValueError: Expected 2D array, got 1D array instead

已解决&#xff1a;ValueError: Expected 2D array, got 1D array instead 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页&#xff0c;我是博主英杰&#xff0c;211科班出身&#xff0c;就职于医疗科技公司&#xff0c;热衷分享知识&#xff0c;武汉…

Vue脚手架安装(保姆级)

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…

常用的点云预处理算法

点云预处理是处理点云数据时的重要部分&#xff0c;其目的是提高点云数据的质量和处理效率。通过去除离群点、减少点云密度和增强特征&#xff0c;可以消除噪声、减少计算量、提高算法的准确性和鲁棒性&#xff0c;从而为后续的点云处理和分析步骤&#xff08;如配准、分割和重…

防火墙--带宽管理

目录 核心思想 带宽限制 带宽保证 连接数的限制 如何实现 接口带宽 队列调度 配置位置 在接口处配置 带宽策略配置位置 带宽通道 配置地方 接口带宽、带宽策略和带宽通道联系 配置顺序 带块通道在那里配置 选项解释 引用方式 策略独占 策略共享 重标记DSCP优先…

keysight P9370A/P9375A USB矢量网络分析仪

Keysight P9370A USB 矢量网络分析仪&#xff0c;4.5 GHz P937xA 系列是是德科技紧凑型矢量网络分析仪&#xff08;VNA&#xff09;&#xff0c;其价格适中&#xff0c;并采用完整的双端口设计&#xff0c;可以显著减小测试需要的空间。这款紧凑型VNA 覆盖十分宽广的频 率范围…

移动终端的安全卫士

随着移动互联网的快速发展&#xff0c;移动端安全风险频发。设备指纹技术凭借高精度的设备识别能力&#xff0c;能够帮助企业提升移动端安全防护能力&#xff0c;精准区分合法与风险行为&#xff0c;跨行业赋能风控&#xff0c;为金融、电商、游戏等多领域提供强大的业务安全保…

基于python的图像去水印

1 代码 import cv2 import numpy as npdef remove_watermark(image_path, output_path):# 读取图片image cv2.imread(image_path)# 转换为灰度图gray cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 使用中值滤波去除噪声median_filtered cv2.medianBlur(gray, 5)# 计算图像的梯…

数据结构——栈和队列(C语言实现)

写在前面&#xff1a; 栈和队列是两种重要的线性结构。其也属于线性表&#xff0c;只是操作受限&#xff0c;本节主要讨论的是栈和队列的定义、表示方法以及C语言实现。 一、栈和队列的定义与特点 栈&#xff1a;是限定仅在表尾进行插入和删除的线性表。对栈来说&#xff0c;表…

ABAP小白开发操作手册+(六)创建维护视图及事件

目录 开发类型&#xff1a; 开发申请&#xff1a; 开发步骤&#xff1a; 1、创建后台表 2、生成维护视图 3、隐藏自带字段 4、事件代码编写 5、配置事务代码 6、其它个性化需求 6.1、修改维护视图字段的可见长度 6.2、根据后台表查看对应维护视图的事务代码 代码如下…