操作系统实战(二)(linux+C语言)

实验内容

通过Linux 系统中管道通信机制,加深对于进程通信概念的理解,观察和体验并发进程间的通信和协作的效果 ,练习利用无名管道进行进程通信的编程和调试技术。

管道pipe是进程间通信最基本的一种机制,两个进程可以通过管道一个在管道一端向管道发送其输出,给另一进程可以在管道的另一端从管道得到其输入。管道以半双工方式工作,即它的数据流是单方向的。因此使用一个管道一般的规则是读管道数据的进程关闭管道写入端,而写管道进程关闭其读出端。

示例程序

效果为:两个进程交替分别对X进行+1操作

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{int pid; //进程号int pipe1[2]; //存放第一个无名管道标号int pipe2[2]; //存放第二个无名管道标号int x; // 存放要传递的整数//使用pipe()系统调用建立两个无名管道。建立不成功程序退出,执行终止if(pipe(pipe1) < 0){perror("pipe not create");exit(EXIT_FAILURE);}if(pipe(pipe2) < 0){perror("pipe not create");exit(EXIT_FAILURE);}//使用fork()系统调用建立子进程,建立不成功程序退出,执行终止if((pid=fork()) <0){perror("process not create");exit(EXIT_FAILURE);}//子进程号等于0 表示子进程在执行else if(pid == 0){//子进程负责从管道1的0端读,管道2的1端写//所以关掉管道1的1端和管道2的0端。close(pipe1[1]);close(pipe2[0]);//每次循环从管道1 的0 端读一个整数放入变量X 中,//并对X 加1后写入管道2的1端,直到X大于10do{read(pipe1[0],&x,sizeof(int));printf("child %d read: %d\n",getpid(),x++);write(pipe2[1],&x,sizeof(int));}while( x<=9 );//读写完成后,关闭管道close(pipe1[0]);close(pipe2[1]);//子进程执行结束exit(EXIT_SUCCESS);}//子进程号大于0 表示父进程在执行else{//父进程负责从管道2的0端读,管道1的1端写,//所以关掉管道1 的0 端和管道2 的1端。close(pipe1[0]);close(pipe2[1]);x=1;//每次循环向管道1 的1 端写入变量X 的值,并从//管道2的0 端读一整数写入X 再对X加1,直到X 大于10do{write(pipe1[1],&x,sizeof(int));read(pipe2[0],&x,sizeof(int));printf("parent %d read: %d\n",getpid(),x++);}while(x<=9);//读写完成后,关闭管道close(pipe1[1]);close(pipe2[0]);}//父进程执行结束return EXIT_SUCCESS;
}

执行结果:

几个关键点 

一、pipe系统调用的使用

  1. 创建管道两个端口 :int pipe[2]
  2. 调用pipe系统调用在两个端口间建立管道
  3. 后续可利用read、write通过管道端口,利用管道进行进程间通信
  4. 为了防止出现死锁以及消息冲突,需要进行close处理
  5. 读写操作传输的值都是实际地址

pipe管道端口不与进程绑定,而是可以更改的;pipe管道端口的作用是固定的,0端口读,1端口写

二、perror函数的使用

perror()是一个C语言标准库函数,用于打印错误信息。它接受一个字符串参数作为错误信息的前缀,并将系统的错误消息附加到该前缀后面

一般用于打印系统调用的错误,能够自动输出系统调用错误的编码。见下面示例代码:

#include <stdio.h>
#include <errno.h>int main() {FILE *file = fopen("nonexistent_file.txt", "r");if (file == NULL) {perror("Error opening file: ");return 1;}// 其他文件操作...fclose(file);return 0;
}

其输出是:

Error opening file: No such file or directory

三、read、write函数的使用 

(1)读取时:要先关闭管道的写入端口,才能从输出端口进行读出

read函数的三个参数分别为:

close(port[1]);
read(port[0],数据,要传输的数据长度);

 (2)输出时:

write函数的三个参数分别为:

close(port[0]);
write(port[1],数据,要传输的数据长度);

本次实验

实验内容

实验代码

#include <stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include <wait.h>//三个递归函数的定义,每个函数用一个进程来运行,运行结果利用pipe通信
//f(x)
int fx(int x){if(x <= 0){printf("the number you input must be positive!");return 0;}else if(x == 1){return 1;}else if(x > 1){return fx(x-1) * x;}
}
//f(y)
int fy(int y){if(y <= 0){printf("the number you input must >2!");return 0;}else if(y == 1 || y == 2){return 1;}else if(y > 2){return fy(y-1) + fy(y-2);}
}
//f(x,y)
int fxy(int fx, int fy){return fx + fy;
}int main(int argc,char* argv[]){int pid1;  //子进程1int pid2;  //子进程2int pid;  //父进程int pipe1[2];  //第一个管道:父进程写,子进程读int pipe2[2];  //第二个管道:父进程读,子进程写int result1;  //保存f(x)和f(y)的计算结果int result2;int result;int status;  //记录子进程状态int x;int y;//从键盘输入x和yprintf("please input number x: ");scanf("%d",&x);printf("\n");printf("please input number y: ");scanf("%d",&y);printf("\n");//开始创建管道if(pipe(pipe1)<0){perror("pipe1 not create");exit(EXIT_FAILURE);}if(pipe(pipe2)<0){perror("pipe2 not create");exit(EXIT_FAILURE);}//创建子进程开始执行操作pid1=fork(); if(pid1<0){  //第一个子进程,注意以下!!!!我在这里踩了坑perror("process1 not create");exit(EXIT_FAILURE);}//子进程1在执行if(pid1==0){//子进程负责在管道1的1端写,父进程在管道1的0端读//所以关掉管道1的0端close(pipe1[0]);result1=fx(x);printf("子进程1完成了运算,f(x)=%d\n",result1);//将运行结果发送出去write(pipe1[1],&result1,sizeof(int));//写完成后,关闭管道close(pipe1[1]);//子进程执行结束exit(EXIT_SUCCESS);}//父进程运行else{waitpid(pid1, &status, 0);  //等待子进程运行结束再执行父进程(主动阻塞父进程,也可以让其因为read被动阻塞)printf("我是父进程%d,已经等待子进程%d完成,现开始运行\n",getpid(),pid1);close(pipe1[1]);  //在访问共享资源前都要避免互斥//从管道1的0端口获得数值read(pipe1[0],&result1,sizeof(int));close(pipe1[0]);//创建另一个进程2执行f(y)程序printf("父进程%d已获取结果1,先创建新子进程运行f(y)\n ",getpid());pid2=fork();//使用fork()系统调用建立子进程,建立不成功程序退出,执行终止if(pid2 <0){perror("子进程2没有创建成功");exit(EXIT_FAILURE);}//第二个子进程,pipe2[1]用来写if(pid2 == 0){//关掉pipe2[0]端close(pipe2[0]);//计算f(y)result2 = fy(y);printf("子进程2完成了运算,f(y)=%d\n",result2);//发送消息write(pipe2[1],&result2,sizeof(int));close(pipe2[1]);}//父进程else{waitpid(pid2, &status, 0);close(pipe2[1]);//接受第二个子进程从管道里发来的信息read(pipe2[0],&result2,sizeof(int));result = fxy(result1,result2);printf("f(x) = %d\n",result1);printf("f(y) = %d\n",result2);printf("f(x,y) = %d\n",result);//读完成后关闭管道close(pipe2[1]);//父进程执行结束return EXIT_SUCCESS;}}
}

运行结果 

踩的坑 

1、读只能从端口0进行,写从端口1进行

2、编程思路:对于一个进程它必须只要要完成一个操作单位体,计算一个递归函数就是一个操作单位体

3、

赋值运算优先级小于比较运算:所以if(pid1=fork()>0)此时执行的是if(pid1=(fork()>0)),也就是说pid1并未得到fork()返回的子进程pid而是得到比较运算结果1。

解决方案:1、可以把pid=fork,与pid>0分成两步去实现;2、可以修改if(pid1=fork()>0)为if((pid1=fork())>0)

makefile文件编写 

# DEPEND   代替  依赖文件# CC       代替  gcc# CFLAGS   代替  编译命令# PARA     代替  参数# OBJS     代替 目标文件DEPEND=expr_2.cOBJS=expr_2CC=gccCFLAGS=-oexpr_1:$(DEPEND)$(CC) $(DEPEND) $(CFLAGS) $(OBJS)run:$(OBJS)./$(OBJS) clean:rm *.o $(OBJS) -rf

实验感悟 

一、进程协作的特点:

  • 共享资源:进程协作和通信允许多个进程共享资源,本示例中父子进程共享变量x
  • 数据传输:进程可以通过通信机制相互传输数据,以实现信息交换和共享。本实验代码中进程之间传输不同函数运行的结果,从而实现协作
  • 进程间控制:进程协作可以通过管道、消息队列、共享内存等实现进程间的控制和协调。本实验中采用管道控制

二、进程通信机制:

目前我们已经学习的有四种类型,如下:

  • 管道:管道是一种单向通信机制,用于在具有亲缘关系的进程之间传递数据。它可以通过创建一个管道文件描述符来实现进程间的通信

  • 消息队列:消息队列是一种存放消息的容器,进程可以通过发送和接收消息来实现通信。消息队列提供了一种异步通信的方式

  • 共享内存:共享内存允许多个进程共享同一块内存区域,进程可以通过读写共享内存来交换数据

  • 信号量(Semaphore):信号量是一种用于进程间同步和互斥访问共享资源的机制。进程可以使用信号量来控制对共享资源的访问

其中管道主要用于父子两个进程之间的简单通信,是单向的。实现起来也简单快捷,但是无法处理多个进程之间的复杂协作

 三、进程管道通信的具体流程:

  1. 创建管道:通过调用系统的管道函数,创建一个管道,它会返回两个文件描述符,一个用于读取数据,一个用于写入数据

  2. 创建子进程:使用系统调用(如fork())创建一个新的子进程

  3. 父子进程通信:父进程可以通过写入管道的文件描述符将数据发送给子进程,子进程可以通过读取管道的文件描述符接收数据

  4. 关闭管道:当通信结束后,父进程和子进程都需要关闭管道的文件描述符,释放相关的资源

总结


本文到这里就结束啦~~

本篇文章重点在于利用linux系统的完成操作系统的实验,巩固课堂知识

本篇文章的撰写+实验代码调试运行+知识点细致化学习,共花了本人3h左右的时间

个人觉得已经非常详细啦,如果仍有不够希望大家多多包涵~~如果觉得对你有帮助,辛苦友友点个赞哦~

知识来源:山东大学操作系统实验二、山东大学《操作系统原理实用实验教程》张鸿烈老师编著

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3032218.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

代码审计平台sonarqube的安装及使用

docker搭建代码审计平台sonarqube 一、代码审计关注的质量指标二、静态分析技术分类三、使用sonarqube的目的四、sonarqube流程五、docker快速搭建sonarqube六、sonarqube scanner的安装和使用七、sonarqube对maven项目进行分析八、sonarqube分析报告解析九、代码扫描规则定制十…

激光雷达赋能盲人导航:精准安全与实施挑战并存

在当今科技的推动下&#xff0c;一款名为“蝙蝠避障”专门为盲人设计的辅助应用正逐渐成为他们独立出行的重要工具&#xff0c;特别是那些融入了激光雷达技术的应用&#xff0c;为盲人导航提供了前所未有的支持。然而&#xff0c;任何技术都有其两面性&#xff0c;接下来我们将…

Fcos源码训练编译问题

训练fcos代码时出现问题 ImportError: cannot import name ‘_C’ 原因是没有对代码进行编译 运行python setup.py develop --no-deps进行代码编译 编译过程中出现报错&#xff1a; fcos_core/csrc/cuda/ROIAlign_cuda.cu:5:10: fatal error: THC/THC.h: No such file or dire…

【Hugging Face】编写 shell 脚本在 huggingface 镜像站快速下载模型文件

前言 我们使用 Git LFS 和 wget 结合的方法&#xff0c;小文件使用 Git 下载&#xff0c;大文件使用 wget 下载 Git 下载的优缺点&#xff1a; 优点&#xff1a;相当简单 缺点&#xff1a;不支持断点续传 直接 wegt 下载比较稳定&#xff0c;但是欠缺优雅 我们可以将这两…

python + word文本框中文字识别并替换【真替换,不只是识别】

1. 简单描述 在一些转换场景下&#xff0c;文本框不会被转换&#xff0c;需要先识别成文字内容。 【识别的文字段落可能会和实际看到的效果有些差异&#xff0c;后续还需校对&#xff0c;如下图】。 不足&#xff1a;除了上面说的那个情况&#xff08;上图说的问题&#xff0…

pytest + yaml 框架 - 录制接口转 yaml 用例实现

pytest yaml 框架基本不用写 python 代码&#xff0c;只需写yaml 文件用例就能实现接口自动化。 现在引入接口录制功能&#xff0c;连 yaml 文件也不用写了&#xff0c;点点点就能生成 yaml 用例文件了。 录制功能在v1.3.4版本上实现 pip instal pytest-yaml-yoyo 环境准备 …

LLM 可以从简单数据中学习吗?

在 10 月份的一次周会结束后&#xff0c;我提到 SFT 训练后的 Loss 曲线呈现阶梯状&#xff0c;至于为什么&#xff0c;并没有人有合理的解释&#xff0c;加上当时的重心是提升次日留存率&#xff0c;Loss 曲线呈现阶梯状与次日留存率的关系还太远&#xff0c;即使有问题&#…

微信小程序按钮去除边框线

通常我们去掉按钮边框直接设置 border:0 但是在小程序中无效&#xff0c;设置outline:none也没用&#xff0c;当然可能你会说加权重无效 实际上该样式是在伪元素::after内&#xff0c;主要你检查css 还看不到有这个关系&#xff0c;鹅厂就是坑多 类样式::after {border: non…

halcon获取Licenses--每月一换

转到https://www.51halcon.com/ 点击授权&#xff0c;根据你的版本选择progress或者steady进行下载 记住每月一换哦

Ubuntu磁盘剩余空间不足,空间异常

近日发现用了3年的Ubuntu系统笔记本磁盘空间极度告急&#xff0c;上网搜了一下都是讲解如何扩容、如何重新挂载空间&#xff0c;但是博主发现/home目录明明分配了200G的空间&#xff0c;但是只剩下6G可用&#xff0c;查询所有的文件夹发现&#xff0c;所有文件加起来已使用50G左…

使用Baidu Comate五分钟 , 工作时间摸鱼8小时

Baidu Comate&#xff1a;引领智能编码新时代 文章目录 Baidu Comate&#xff1a;引领智能编码新时代一、明日工具&#xff0c;今日领先——百度Comate智能编码助手二、万变不离其宗——适配场景需求三、功能研究3.1 指挥如指掌——指令功能3.2 助手增援——插件功能使用3.3 实…

本地运行.net项目

有时候需要我们自己做一个.net的课设项目&#xff0c;但是我们有了代码后却不知道怎么运行。我们0基础来学习一下如何运行一个.net项目 1.安装visual studio 2022 不用安装老版本&#xff0c;新版就可以。安装好了2022版本&#xff0c;这是一个支持web的IDE&#xff0c;我们可…

【数据结构初阶】直接插入排序

最近浅学了直接插入排序&#xff0c;写个博客做笔记&#xff01;笔记功能除外若能对读者老爷有所帮助最好不过了&#xff01; 直接插入排序是插入排序的一种&#xff0c;那么介绍直接插入排序之前先介绍一下常见的排序算法&#xff01; 目录 1.常见的排序算法 2.直接插入排…

【LeetCode:2391. 收集垃圾的最少总时间 + 二分】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

值得收藏!!《软考信息处理技术员》必背100母题,轻松45+

距离软考考试的时间越来越近了&#xff0c;趁着这两周赶紧准备起来 今天给大家整理了——软考信息处理技术员100道经典母题&#xff0c;年年从里面抽&#xff0c;有PDF&#xff0c;可打印&#xff0c;每天刷几道。 第一章 电脑的基本操作 1、&#xff08; &#xff09;不是国产…

特产销售|基于Springboot+vue的藏区特产销售平台(源码+数据库+文档)​

目录 基于Springbootvue的藏区特产销售平台 一、前言 二、系统设计 三、系统功能设计 1系统功能模块 2管理员功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博主介绍&#xff1a;✌️大厂码农|毕设布道…

macOS上将ffmpeg.c编译成Framework

1 前言 本文介绍下在macOS上将ffmpeg的fftools目录下的ffmpeg.c程序&#xff0c;也就是ffmpeg的命令行程序&#xff0c;编译成framework的方法。编译成.a或.dylib亦是类似。 编译环境如下&#xff1a; xcode15.3&#xff1b;ffmpeg branch release/6.1; 2 编译ffmpeg 首先clon…

智能AI个人名片小程序源码系统 带完整的安装代码包以及搭建部署教程

在当今数字化时代&#xff0c;个人名片不再仅仅是一张简单的纸质卡片&#xff0c;而是演变成了一种更加智能、便捷的数字化工具。为了满足这一需求&#xff0c;小编给大家分享一款智能AI个人名片小程序源码系统&#xff0c;该系统不仅提供了完整的安装代码包&#xff0c;还附带…

宋仕强论道之新质生产力

宋仕强论道之新质生产力&#xff0c;宋仕强说当前5G通信、人工智能、万物互联、工业互联网、数字经济、新能源技术和产业等领域正蓬勃发展&#xff0c;成为未来经济增长的重要推动力&#xff0c;也是目前提倡的新质生产力的重要组成部分。而这些领域的发展都离不开数据的采集、…

shopee虾皮跨境商家:月出1000单爆款打造思路!

Shopee爆款打造的方式是需要满足很多特点的&#xff0c;我把它大概归结为了7大要素&#xff1a; 1、顺应平台潮流 通过Shopee前台、市场周报&#xff0c;以及你对这个行业的经验&#xff0c;能够及时掌握平台最近主推产品的信息&#xff0c;又刚好我们店铺里面的商品有能够搭…