大数据基础工程技术团队4篇论文入选ICLR,ICDE,WWW

近日,由阿里云计算平台大数据基础工程技术团队主导的四篇时间序列相关论文分别被国际顶会ICLR2024、ICDE2024和WWW2024接收。

论文成果是阿里云与华东师范大学、浙江大学、南京大学等高校共同研发,涉及时间序列与智能运维结合的多个应用场景。包括基于Pathways架构的自适应多尺度时间序列预测模型Pathformer;基于扰动技术的时间序列解释框架ContraLSP;多正常模式感知的频域异常检测算法MACE;轻量数据依赖的异常检测重训练方法LARA。此次,时间序列相关模型等多篇论文的入选,表明阿里云在大数据基础技术领域的研究得到了国际学术界的认可,不仅展示了阿里云的技术竞争力,也创造了更多国际合作交流的可能性。

  • ICLR(International Conference on Learning Representations)会议是机器学习和深度学习领域的顶级国际会议,与NeurIPS、ICML并称为机器学习三大顶级会议,在谷歌的全领域学术指标排行榜中位列前十,以展示人工智能、统计学和数据科学领域的深度学习各个方面的前沿研究以及机器视觉、计算生物学、语音识别、文本理解、游戏和机器人等重要应用领域而闻名全球。

  • ICDE(IEEE International Conference on Data Engineering) 是数据库研究领域历史悠久的国际会议,与SIGMOD、VLDB并称为数据库三大顶级会议,会议聚焦于设计,构建,管理和评估高级数据密集型系统和应用等前沿研究问题。

  • WWW(The Web Conference)是为交叉,新兴,综合领域的顶级会议,CCF-A类,会议关注万维网的未来发展,汇聚全世界相关的科研工作者、从业者和领域专家,共同讨论互联网的发展、相关技术的标准化以及这些技术对社会和文化的影响。

Pathformer:基于Pathways架构的自适应多尺度时间序列预测模型

现实场景中的时间序列在不同的时间尺度展现出不同的变化,如云计算场景中的CPU,GPU,内存等资源需求呈现出日、月、季节等独特尺度的时间模式。这为时间序列预测带来一定的困难。一个好的时间序列预测模型需要考虑完备的时序多尺度建模能力以及进一步自适应选择多尺度的能力。

基于Transformer模型的多尺度建模,主要有两个挑战。

1. 不完备的多尺度建模。只是针对时间分辨率不能有效地捕捉不同范围的时间依赖关系,相反,考虑时间距离虽然能提取不同范围的时间依赖,但全局和局部间隔受到数据划分的影响,单一的时间分辨率并不完备。

2. 固定地多尺度建模过程。对所有时序采用固定的多尺度建模阻碍了每个时序的重要特征捕捉,然而为每个数据集或每个时序手动调整最佳尺度非常耗时且难以处理。

针对这些问题,我们提出了一个基于Pathways架构的自适应多尺度Transformer模型 Pathformer,它整合了时间分辨率和时间距离提出了一个多尺度Transfomer模块,使用双重注意力机制建模局部和全局的时间依赖关系,使模型具备完备的多尺度建模能力。其次,我们提出自适应pathways,激活Transformer的多尺度间建模能力。它基于输入时序逐层地路由和聚合多尺度特征形成了自适应pathways的多尺度建模,可以提升模型的预测效果和泛化性。

图片

ContraLSP:基于对比稀疏扰动技术的时间序列解释框架

在智能运维等领域,为机器学习模型所做的预测提供可靠的解释具有极高的重要性。现有的解释方法涉及使用显著性方法,这些方法的解释区分取决于它们与任意模型的交互方式。一些工作建立了显著图,例如,结合梯度或构造注意力机制,以更好地处理时间序列特征,而它们难以发现时间序列模式。其他替代方法,包括Shapley值或LIME,通过加权线性回归在局部近似模型预测,为我们提供解释。这些方法主要提供实例级别的显著图,但特征间的互相关常常导致显著的泛化误差。在时间序列中最常见的基于扰动的方法通常通过基线、生成模型或使数据无信息的特征来修改数据,但这些扰动的非显著区域并不总是无意义的并且存在不在数据分布内的样本,导致解释模型存在偏差。

基于此,本文提出了ContraLSP框架,该框架如图所示。这是一个局部稀疏解释模型,它通过引入反事实样本来构建无信息扰动同时保持样本分布。此外,我们融入了特定于样本的稀疏门控机制来生成更倾向于二值化且平滑的掩码,这有助于简洁地整合时间趋势并精选显著特征。在保证标签的一致性条件下,其整体优化目标为:

图片

图片

论文在白盒时序预测,黑盒时序分类等仿真数据,和真实时序数据集分类任务中进行了实验,ContraLSP在解释性能上超越了SOTA模型,显著提升了时间序列数据解释的质量。

MACE:多正常模式感知的频域异常检测算法

异常检测是智能运维领域的重要研究方向。近来,基于重构类方法的异常检测模型独占鳌头,在无监督异常检测中达到了很高的准确度,涌现了大量优秀的神经网络模型,例如:基于RNN类的神经网络OmniAnomaly, MSCRED; 基于transformer类的神经网络AnomalyTransformer, DCdetector等,但这类方法一个模型只能较好地捕捉一种或少数几种正常模式。因此,涌现出了一批以元学习为辅助,快速适应不同正常模式的异常检测模型,例如PUAD, TranAD等。但这些方法依然要求对不同的正常模式定制不同的模型,当存在十万级不同正常模式的服务时,很难维护这么多神经网络模型。

与其他神经网络直接从数据样本中判断当前样本是否为异常不同,MACE从数据样本与该数据样本对应的正常模式的关系中提取异常。在MACE中,我们首先提出使用频域表征机制提取出正常模式的频域子空间,并使用频域表征技术把当前数据样本映射到该频域子空间中。若该数据样本离这个正常模式的频域子空间越远则在映射后,映射点与原始样本距离越远,重构误差越大。若该数据样本离这个频域子空间的频域子空间越近,则在映射后,映射点与原始样本距离越近,重构误差越小。因此,我们可以根据当前数据样本与其对应的正常模式频域子空间的关系,令对于当前正常模式而言的正常数据重构误差远小于异常数据的重构误差,以此检测异常。更进一步,我们提出上下文感知的傅里叶变换和反变换机制,有效利用频域的稀疏性提升计算效率,在频域上不存在时序依赖,可以对该模型进行细粒度的高并发实现,进一步减少异常检测的时间开销。另外,我们提出Peak Convolution与Valley Convolution机制对短期异常进行增强使其更容易被检测到。

图片

LARA:轻量数据依赖的异常检测重训练方法

在云服务的监控场景中,经常出现正常模式随时间不断变化,且在变化初期观测数据数量不足以支撑模型训练的问题。目前,可以解决正常模式更替变化的方法主要有迁移学习、元学习、基于信号处理的方法。但同时他们也存在一些弊端,并不完全适配当前问题。例如迁移学习未考虑本问题中多个历史正常模式之间存在的时序关系。元学习同样未考虑历史正常模式之间的时序关系,同时,需要存储大量的历史数据。基于信号处理的方法,这类方法推理阶段时间开销太大,无法在流量峰值处进行实时异常检测。

因此,我们提出方法LARA解决上述问题。为了解决重训练新观测数据不足的问题,我们提出反刍模块,该模块使用老模型恢复历史分布中与新观测数据相似的数据,并使用历史数据与新观测数据一起估计每一个新观测数据的隐藏状态z。为了解决重训练计算开销大的问题,我们使用映射函数M_z和M_x分别把老模型输出的隐藏状态和重构数据映射为当前分布的隐藏状态估计值与新观测数据,并数学证明了映射函数令映射误差最小的最优形式为线性,极大降低了重训练开销。更进一步,我们根据M_z 与M_x的形式,提出一种相应的损失函数设计范式,可以保证重训练问题是一个凸问题,具有唯一全局最优解,从而保证较快的收敛速率,降低重训练计算开销,避免陷入过拟合

图片

论文链接

▶论文标题Pathformer: Multi-Scale Transformers With Adaptive Pathways For Time Series Forecasting

  • 论文作者:陈鹏, 张颖莹, 程云爻, 树扬, 王益杭, 文青松, 杨彬, 郭晨娟

  • 论文链接:https://openreview.net/pdf?id=lJkOCMP2aW

  • 代码链接:

    https://github.com/alibaba/sreworks-ext/tree/main/aiops/Pathformer_ICLR2024

论文标题:Explaining Time Series via Contrastive and Locally Sparse Perturbations

  • 论文作者:刘子川,张颖莹,王天纯,王泽凡,骆东升,杜梦楠,吴敏,王毅,陈春林,范伦挺,文青松

  • 论文链接:https://openreview.net/pdf?id=qDdSRaOiyb

  • 代码链接:

    https://github.com/alibaba/sreworks-ext/tree/main/aiops/ContraLSP

论文标题:Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection

  • 论文作者:陈飞佚,张颖莹,秦臻,范伦挺,姜仁河,梁宇轩,文青松,邓水光

  • 论文链接:https://arxiv.org/abs/2311.16191

论文标题:LARA: ALight and Anti-overfitting Retraining Approach for   Unsupervised Time Series Anomaly Detection  

  • 论文作者:陈飞佚,秦臻,周孟初,张颖莹,邓水光,范伦挺,庞观

  • 论文链接:https://arxiv.org/abs/2310.05668

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3031991.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

recycleview和banner新闻列表轮播图

说明:最近碰到一个需求,弄一个新闻列表和轮播图,在首页显示,并且需要json解析,图片下载,轮播图和新闻列表一起滑动 ui效果图: 文件说明: step1:引用依赖包 图片下载 json解析 轮播…

Java入门基础学习笔记4——开发Helloworld入门程序

Java程序开发的三个步骤: 1)编写代码 2)编译代码 3)运行代码 注意事项: 第一个java程序建议使用记事本来编写。 建议代码文件名全英文、首字母大写、满足驼峰模式,源代码文件的后缀必须是.java 注意&a…

企业破产重整:从“至暗时刻”到“涅槃重生”

今天我们不谈星辰大海,而是要潜入商业世界的深海区,探索那些濒临绝境的企业是如何借助“破产重整”的神秘力量,实现惊天大逆转的! 一、破产重整,到底是个啥? 想象一下,企业像是一位远航的船长…

数据增强,迁移学习,Resnet分类实战

目录 1. 数据增强(Data Augmentation) 2. 迁移学习 3. 模型保存 4. 102种类花分类实战 1. 数据集 2.导入包 3. 数据读取与预处理操作 4. Datasets制作输入数据 5.将标签的名字读出 6.展示原始数据 7.加载models中提供的模型 8.初始化…

从静态PPT到智能演讲——人工智能在演示文稿中的应用

1.概述 在这个信息过载的时代,能够吸引并持续吸引观众的注意力无疑成为了一项艰巨的任务。公众演讲领域正经历着一场由人工智能(AI)引领的革命。AI不仅在制作引人入胜的内容方面发挥作用,而且在分析演讲的传递方式上也起着关键作…

【C++】 类的6个默认成员函数

目录 1. 类的6个默认成员函数 一.构造函数 1.基本概念 2 特性 注意:C11 中针对内置类型成员不初始化的缺陷,又打了补丁, 3.构造函数详解 3.1构造函数体赋值 3.2 初始化列表 3.3 explicit关键字 二.析构函数 1 概念 2 特性 两个栈实…

Vue路由拆分

1.在src下建立router&#xff0c;在router中建立文件index 2.将main.js中部分内容复制 App <template> <div><a href"#/friend">朋友</a><br><a href"#/info">信息</a><br><a href"#/music&quo…

Photoshop中图层的应用

Photoshop中图层的应用 前言Photoshop中的图层面板Photoshop中图层的基本操作新建图层复制/剪切图层链接图层修改图层名称及颜色背景图层与普通图层栅格化图层图层的对齐与分布图层的合并 前言 图层在Photoshop中就像一层一层的透明纸&#xff0c;可以透过图层的透明区域看到下…

动手学深度学习16 Pytorch神经网络基础

动手学深度学习16 Pytorch神经网络基础 1. 模型构造2. 参数管理1. state_dict()2. normal_() zeros_()3. xavier初始化共享参数的好处 3. 自定义层4. 读写文件net.eval() 评估模式 QA 1. 模型构造 定义隐藏层–模型结构定义前向函数–模型结构的调用 import torch from torch…

万村乐数字乡村综合服务系统如何助力农民收入的腾飞

作为行业领先的数字乡村综合服务系统——“万村乐”&#xff0c;其核心便是基于互联网乡村和物联网乡村的强大信息基石之上。通过幸福民生服务、高效政务服务以及规范的党务服务这三条主线&#xff0c;以手机端平台为承载&#xff0c;借助事件反馈、精准种养数据、精细人员网格…

【Java】/*方法的使用-快速总结*/

目录 一、什么是方法 二、方法的定义 三、实参和形参的关系 四、方法重载 五、方法签名 一、什么是方法 Java中的方法可以理解为C语言中的函数&#xff0c;只是换了个名称而已。 二、方法的定义 1. 语法格式&#xff1a; public static 返回类型 方法名 (形参列表) { //方…

AI领域最伟大的论文检索网站

&#x1f4d1; 苏剑林&#xff08;Jianlin Su&#xff09;开发的“Cool Papers”网站旨在通过沉浸式体验提升科研工作者浏览论文的效率和乐趣。这个平台的核心优势在于利用Kimi的智能回答功能&#xff0c;帮助用户快速了解论文的常见问题&#xff08;FAQ&#xff09;&#xff0…

定了,2024年天门中级职称报名开始了

关于今年天门中级职称报名各类相关事宜&#xff0c;我们一起来看看 一、报名时间和地址 1.报名时间&#xff1a;2024年5月10日至5月22日&#xff0c;并由主管部门或用人单位将报名表提交给人力资源部&#xff08;注意不要错过时间了&#xff09; 水测准考证领取时间为正式考试…

卷积模型的剪枝、蒸馏---蒸馏篇--NST特征蒸馏(以deeplabv3+为例)

本文使用NST特征蒸馏实现deeplabv3+模型对剪枝后模型的蒸馏过程; 一、NST特征蒸馏简介 下面是两张叠加了热力图(heat map)的图片,从图中很容易看出这两个神经元具有很强的选择性:左图的神经元对猴子的脸部非常敏感,右侧的神经元对字符非常敏感。这种激活实际上意味着神经…

自回归模型的优缺点及改进方向

在学术界和人工智能产业中&#xff0c;关于自回归模型的演进与应用一直是一个引发深入讨论和多方观点交锋的热门议题。尤其是Yann LeCun&#xff0c;这位享誉全球的AI领域学者、图灵奖的获得者&#xff0c;以及被誉为人工智能领域的三大巨擘之一&#xff0c;他对于自回归模型持…

笔记2:torch搭建VGG网络代码详细解释

VGG网络结构 VGG网络&#xff08;Visual Geometry Group Network&#xff09;是一种经典的深度学习卷积神经网络&#xff08;CNN&#xff09;架构&#xff0c;由牛津大学的视觉几何组&#xff08;Visual Geometry Group&#xff09;在2014年提出。VGG网络在ImageNet挑战赛2014…

软件开发项目实施方案-精华资料(Word原件)

依据项目建设要求&#xff0c;对平台进行整体规划设计更新维护&#xff0c;对系统运行的安全性、可靠性、易用性以及稳健性进行全新设计&#xff0c;并将所有的应用系统进行部署实施和软件使用培训以及技术支持。 根据施工总进度规划&#xff0c;编制本项目施工进度计划表。依据…

OSPF虚链路

原理概述 通常情况下&#xff0c;一个OSPF网络的每个非骨干区域都必须与骨干区域通过ABR路由器直接连接&#xff0c;非骨干区域之间的通信都需要通过骨干区域进行中转。但在现实中&#xff0c;可能会因为各种条件限制&#xff0c;导致非骨干区域和骨干区域无法直接连接&#x…

在家就可以轻松赚零花钱的副业

互联网的兴起让很多人实现了在家办公的梦想&#xff0c;同时也为人们提供了更多的挣钱方式。以下是4种可以在家中兼职副业赚钱的方法&#xff1a; 1. 写作工作 如果你善于写作&#xff0c;并且有一定的文学素养&#xff0c;那么可以通过自己的博客或其他媒体平台来写作&#…

SMART700西门子触摸屏维修6AV6 648-0CC11-3AX0

西门子工控机触摸屏维修系列型号&#xff1a;PС477,PC677,TD200,TD400,KTP178,TP170A,TP170B,TP177A,TP177B,TP270,TP277,TP27,MP370,MP277,OP27,OP177B等。 触摸屏故障有&#xff1a;上电黑屏, 花屏,暗屏,触摸失灵,按键损坏,电源板,高压板故障,液晶,主板坏等,内容错乱、进不了…