凸优化理论学习一|最优化及凸集的基本概念

文章目录

  • 一、优化问题
    • (一)数学优化
    • (二)凸优化
  • 二、凸集
    • (一)一些标准凸集
    • (二)保留凸性的运算
    • (三)正常锥和广义不等式
    • (四)分离和支撑超平面


一、优化问题

(一)数学优化

从本质上讲,人工智能的目标就是最优化——在复杂环境中与多体交互中做出最优决策。几乎所有的人工智能问题都会归结为一个优化问题。

  • 优化目标:minimize f 0 ( x ) f_0(x) f0(x)
  • 约束条件:
    • 非等式约束: f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq0,i=1,...,m fi(x)0i=1,...,m
    • 等式约束: g i ( x ) = 0 , i = 1 , . . . , m g_i(x)=0,i=1,...,m gi(x)=0i=1,...,m

将最优化问题用于求解最佳决策时, x x x代表决策,约束用于限制决策或对结果施加条件
将最优化问题用于求解最优模型时, x x x 表示模型中的参数,约束对模型参数提出要求(例如,非负性)

最优化问题一般情况下不能得到完全的解决,但是可以尝试近似地解决它,而且通常无伤大雅。这个问题的例外情况是:凸优化问题。

一般非凸问题的传统技术通常会涉及到一定的妥协:

  • 局部优化方法(非线性规划)
    • 在其附近的可行点中找到一个使 f 0 f_0 f0 最小的点
    • 可以处理大问题,例如神经网络训练
    • 需要初始猜测,并且通常需要算法参数微调
    • 不提供有关找到的点有多次优的信息
  • 全局优化方法
    • 找到(全局)解决方案
    • 最坏情况的复杂性随着问题的规模呈指数级增长
    • 通常基于解决凸子问题

(二)凸优化

凸优化问题是特殊形式的优化问题,包括线性规划 (LP)、二次规划 (QP) 等,我们通常能够可靠、高效地解决这些问题。

  • 优化目标:minimize f 0 ( x ) f_0(x) f0(x)
  • 约束条件:
    • 非等式约束: f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq0,i=1,...,m fi(x)0i=1,...,m
    • 等式约束: A x = b Ax=b Ax=b

凸优化问题与最优化问题的对比:

  • 凸优化问题的等式约束是线性的
  • f 0 , . . . , f m f_0,..., f_m f0,...,fm是凸的: θ ∈ [ 0 , 1 ] , f i ( θ x + ( 1 − θ ) y ) ≤ θ f i ( x ) + ( 1 − θ ) f i ( y ) \theta \in [0,1],f_i(\theta x+(1-\theta)y)\leq\theta f_i(x)+(1-\theta)f_i(y) θ[0,1],fi(θx+(1θ)y)θfi(x)+(1θ)fi(y)

二、凸集

(一)一些标准凸集

仿射集包含通过集合中任意两个不同点的线(通过 x 1 x_1 x1 x 2 x_2 x2两点的线: x = θ x 1 + ( 1 − θ ) x 2 , θ ∈ R x=\theta x_1+(1-\theta)x_2,\theta \in R x=θx1+(1θ)x2,θR

  • 函数形式为f=Ax+b,则称函数是仿射的,即线性函数加常数的形式。
  • 比如线性方程组的解 { x ∣ A x = b } \{x |Ax = b\} {xAx=b},并且每个仿射集都可以表示为线性方程组的解集
    在这里插入图片描述

凸集包含集合中任意两点之间的线段( x 1 x_1 x1 x 2 x_2 x2两点间的线段: x = θ x 1 + ( 1 − θ ) x 2 , 0 ≤ θ ≤ 1 x=\theta x_1+(1-\theta)x_2,0\leq\theta\leq1 x=θx1+(1θ)x2,0θ1

  • 凸集满足对于 x 1 , x 2 ∈ C , 0 ≤ θ ≤ 1 x_1,x_2\in C,0\leq\theta\leq1 x1,x2C,0θ1,有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C
  • 以下为一个凸集和两个非凸集的示意:
    在这里插入图片描述

为什么 x = θ x 1 + ( 1 − θ ) x 2 x=\theta x_1+(1-\theta)x_2 x=θx1+(1θ)x2可以表示任意两点连接线段的所有点?将上式展开得:
x = θ x 1 + ( 1 − θ ) x 2 = θ x 1 + x 2 − θ x 2 = θ ( x 1 − x 2 ) + x 2 x=\theta x_1+(1-\theta)x_2=\theta x_1+x_2-\theta x_2=\theta(x_1-x_2)+x_2 x=θx1+(1θ)x2=θx1+x2θx2=θ(x1x2)+x2
在这里插入图片描述

凸包: S 中所有点的凸组合的集合( x 1 , . . . , x k x_1,...,x_k x1,...,xk的凸组合: x = θ 1 x 1 + θ 2 x 2 + . . . + θ k x k x=\theta_1 x_1+\theta_2 x_2+...+\theta_k x_k x=θ1x1+θ2x2+...+θkxk,其中 θ 1 + . . . + θ k = 1 , θ i ≥ 0 \theta_1+...+\theta_k =1,\theta_i \geq 0 θ1+...+θk=1,θi0
在这里插入图片描述
凸锥体: 包含集合中点的所有圆锥组合的集合( x 1 x_1 x1 x 2 x_2 x2的圆锥组合: x = θ 1 x 1 + θ 2 x 2 x=\theta_1 x_1+\theta_2 x_2 x=θ1x1+θ2x2,且 θ 1 ≥ 0 , θ 2 ≥ 0 \theta_1\geq0,\theta_2\geq0 θ10,θ20

在这里插入图片描述

超平面: 形式为 { x ∣ a T x = b } \{x | a^T x = b\} {xaTx=b}的集合,其中 a ≠ 0 a ≠ 0 a=0半空间: 形式为 { x ∣ a T x ≤ b } \{x | a^T x \leq b\} {xaTxb}的集合,其中 a ≠ 0 a ≠ 0 a=0。(a是法向量,超平面是仿射和凸的;半空间是凸的)
在这里插入图片描述

欧几里得球: B ( x c , r ) = { x ∣ ∣ ∣ x − x c ∣ ∣ 2 ≤ r } = { x c + r u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } B(x_c,r)=\{x|\ ||x-x_c||_2\leq r\} = \{x_c+ru|\ ||u||_2\leq1\} B(xc,r)={x ∣∣xxc2r}={xc+ru ∣∣u21}

椭球: { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } = { x c + r u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } = { x c + A u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } \{x|\ (x-x_c)^T P^{-1}(x-x_c)\leq 1\} = \{x_c+ru|\ ||u||_2\leq1\} = \{x_c+Au|\ ||u||_2\leq1\} {x (xxc)TP1(xxc)1}={xc+ru ∣∣u21}={xc+Au ∣∣u21},其中 P ∈ S + + n P\in S^n_{++} PS++n,也就是说P 对称正定,A平方且非奇异。

中心为 x c x_c xc,半径为 r r r 的标准球: { x ∣ ∣ ∣ x − x c ∣ ∣ ≤ r } \{x|\ ||x − x_c|| ≤ r\} {x ∣∣xxc∣∣r}

标准锥: { ( x , t ) ∣ ∣ ∣ x ∣ ∣ ≤ t } \{(x, t) |\ ||x||≤t\} {(x,t) ∣∣x∣∣t}

欧几里得范数锥: { ( x , t ) ∣ ∣ ∣ x ∣ ∣ 2 ≤ t } \{(x, t) |\ ||x||_2≤t\} {(x,t) ∣∣x2t}

多面体 是有限多个线性不等式和等式的解集,也是有限数量的半空间和超平面的交集。 { x ∣ A x ≤ b , C x = d } \{x| Ax\leq b,Cx=d\} {xAxb,Cx=d}

(二)保留凸性的运算

证明集合 C 凸性的方法:

  • 基于定义:如果 x 1 , x 2 ∈ C , 0 ≤ θ ≤ 1 x_1,x_2\in C,0\leq\theta\leq 1 x1,x2C,0θ1,则有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C
  • 使用凸函数;
  • 表明 C 是通过保留凸性的操作从简单凸集(超平面、半空间、范数球……)获得的;

交运算:(任意数量的)凸集的交集是凸的。
在这里插入图片描述

仿射映射:凸集的仿射映射也是凸的。(函数形式为f=Ax+b,则称函数是仿射的,即线性函数加常数的形式。)

在这里插入图片描述(仿射变换就认为是一个矩阵变换,足球可以映射成一个橄榄球,依然是凸集。)

由仿射变换推出凸集的和也是凸集:
在这里插入图片描述

透视函数:凸集在透视下的像和逆像都是凸的(透视函数实际上就是对向量进行伸缩规范化)
在这里插入图片描述

线性分数函数是仿射映射函数和透视变换的复合函数,依然还是保凸运算,凸集在线性分数函数下的像和逆像都是凸的。从联合概率到条件概率的变换是一个线性分数函数。

在这里插入图片描述

(三)正常锥和广义不等式

正常锥的定义:如果凸锥体 K ⊆ R n K⊆R_n KRn满足如下条件,则称锥 K ⊆ R n K⊆R_n KRn为正常锥。

  • K是凸的
  • K是闭的
  • K是实的,即K有非空的内部
  • K是尖的,即K不包含任何直线

在这里插入图片描述

广义不等式满足类似普通不等式的性质,如传递性,反对称性等等。 广义不等式和普通不等式最大的区别是不是任意两点都是可比的。即 x ≤ y x≤y xy y ≤ x y≤x yx对于普通不等式二者必居其一。而对于广义不等式这不一定成立。所以最小,最大这些概念对于广义不等式变得很复杂。

(四)分离和支撑超平面

分离超平面:利用超平面将两个不相交的凸集分离开来,即得到超平面分离定理。
在这里插入图片描述在这里插入图片描述
支撑超平面:如果C是凸的,那么在C的每个边界点都存在一个支持超平面。
在这里插入图片描述在这里插入图片描述支撑超平面不完全逆定理:如果一个集合是闭的,具有非空内部并且其边界上每个点均存在支撑超平面,那么它是凸的。

参考:
凸优化之保凸运算
广义不等式
【最优化理论与算法】数学预备知识、凸集和凸函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3031014.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

网络基础-ICMP协议

ICMP(Internet Control Message Protocol, Internet控制消息协议) ICMP协议是IP协议的辅助协议,用于在IP网络上发送控制消息,它通常被用于诊断网络故障、执行网络管理任务以及提供一些错误报告;对于收集各…

彩虹聚合DNS管理系统

聚合DNS管理系统可以实现在一个网站内管理多个平台的域名解析,目前已支持的域名平台有:阿里云、腾讯云、华为云、西部数码、CloudFlare。本系统支持多用户,每个用户可分配不同的域名解析权限;支持API接口,支持获取域名…

MySQL的表级锁

📝个人主页:五敷有你 🔥系列专栏:面经 ⛺️稳中求进,晒太阳 表级锁 介绍 对于表锁,分为两类: 表共享读锁表独占写锁 语法 1. 加锁:lock tables 表名... read/write 2.…

PHP 提取数组中的特定的值

需求: 前端展示: (1)之前的页面: (2)修改后的页面: 之前接口返回的数据 : 解决办法:提取tags 中的 ’约 的数组 添加到一个新的数组中去 1:一开…

CSAPP笔记——第一章计算机系统漫游

hello,你好鸭,我是Ethan,很高兴你能来阅读,昵称是希望自己能不断精进,向着优秀程序员前行!💪💪💪 目前博客主要更新Java系列、项目案例、计算机必学四件套等。✔️✔️✔️ 人生之败…

OpenCV中的模块:点云配准

点云配准是点云相关的经典应用之一。配准的目的是估计两个点云之间位姿关系从而完成两者对应点之间的对齐/对应,因而在英文中又叫“align”、“correspondence”。笔者曾经是基于OpenCV进行三维重建的,并且从事过基于深度学习的6DoF位置估计等工作。在这些工作中,除了重建点…

深度学习课程论文精读——ESRGAN

目录 1.研究概述 2.论文创新 2.1 改进生成器的网络框架 2.2 改进判别器 2.3 改进感知损失 2.4 网络插值 3.实验 3.1 评价指标 3.2 训练细节 3.3 对比实验 3.4 消融实验 3.5 网络插值 4.总结 5.阅读参考 文章标题:《ESRGAN: Enhanced Super-Resolution…

SDXL-ControlNet模型MistoLine:引领高精度图像生成的革新高质量图像模型

在数字艺术的浩瀚星空中,MistoLine犹如一颗璀璨的新星,以其对SDXL-ControlNet技术的深度整合,展示了对多种线稿类型的非凡适应能力,并在高精度图像生成领域树立了新的标杆。 GitHub:https://github.com/TheMistoAI/Mi…

Web实时通信的学习之旅:轮询、WebSocket、SSE的区别以及优缺点

文章目录 一、通信机制1、轮询1.1、短轮询1.2、长轮询 2、Websocket3、Server-Sent Events 二、区别1、连接方式2、协议3、兼容性4、安全性5、优缺点5.1、WebSocket 的优点:5.2、WebSocket 的缺点:5.3、SSE 的优点:5.4、SSE 的缺点&#xff1…

代码随想录day62 | 单调栈P2 | ● 503. ● 42.

终于来到了大名鼎鼎的接雨水, 舍友的23年暑期面试就是接雨水 XD 503.下一个更大元素II 给定一个循环数组 nums ( nums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素 。 数字 x 的 下一个更大的元素 是…

ArcGIS如何计算地级市间的距离

一、数据准备 加载配套实验数据包中的地级市和行政区划矢量数据(订阅专栏后,从私信查收数据),如下图所示: 二、计算距离 1. 计算邻近表 ArcGIS提供了计算点和另外点之间距离的工具:分析工具→邻域分析→生成临近表。 计算一个或多个要素类或图层中的要素间距离和其他邻…

C++ | Leetcode C++题解之第79题单词搜索

题目&#xff1a; 题解&#xff1a; class Solution { public:bool exist(vector<vector<char>>& board, string word) {rows board.size();cols board[0].size();for(int i 0; i < rows; i) {for(int j 0; j < cols; j) {if (dfs(board, word, i, …

flutter开发实战-log日志存储zip上传,发送钉钉机器人消息

flutter开发实战-log日志存储zip上传&#xff0c;发送钉钉机器人消息 当我们需要Apk上传的时候&#xff0c;我们需要将日志打包并上传到七牛&#xff0c;上传之后通过钉钉通知我们日志下载地址。 这里我使用的是loggy来处理日志 一、引入loggy日志格式插件 在工程的pubspec.…

指针系列三

文章目录 1.字符指针&#xff1a;2.数组指针&#xff1a;3.二维数组传参的本质4.函数指针变量typedef 关键字 5.函数指针数组6.转移表 1.字符指针&#xff1a; 字符指针&#xff0c;也称为字符串指针&#xff0c;是指向内存中的字符或字符串的指针。 在C语言中&#xff0c;字符…

bash: docker-compose: 未找到命令

bash: docker-compose: 未找到命令 在一台新的服务器上使用 docker-compose 命令时&#xff0c;报错说 docker-compose 命令找不到&#xff0c;在网上试了一些安装方法&#xff0c;良莠不齐&#xff0c;所以在这块整理一下&#xff0c;如何正确快速的安装 docker-compose cd…

Linux 进程间通信 System V系列: 共享内存,信号量,简单介绍消息队列

进程间通信 System V系列: 共享内存,初识信号量 一.共享内存1.引入2.原理3.系统调用接口1.shmget2.shmat和shmdt3.shmctl 4.边写代码边了解共享内存的特性1.ftok形成key,shmget创建与获取共享内存2.shm相关指令3.shmat和shmdt挂接和取消挂接4.shmctl获取共享内存信息,释放共享内…

判断字符是否唯一——力扣

面试题 01.01. 判定字符是否唯一 已解答 简单 相关标签 相关企业 提示 实现一个算法&#xff0c;确定一个字符串 s 的所有字符是否全都不同。 示例 1&#xff1a; 输入: s "leetcode" 输出: false 示例 2&#xff1a; 输入: s "abc" 输出: true…

Vue项目npm install certificate has expired报错解决方法

1.Vue项目 npm install 安装依赖突然报错&#xff1a; npm ERR! code CERT_HAS_EXPIRED npm ERR! errno CERT_HAS_EXPIRED npm ERR! request to https://registry.npm.taobao.org/zrender/download/zrender-4.3.0.tgz failed, reason: certificate has expired npm ERR! A com…

Xilinx 千兆以太网TEMAC IP核简介

Xilinx 公司提供了千兆以太网MAC控制器的可参数化LogiCORET™IP解决方案&#xff0c;通过这个IPCore可以实现FPGA与外部网络物理层芯片的互连。基于Xilinx FPGA 的以太网设计&#xff0c;大大降低了工程的设计复杂度&#xff0c;缩短了开发周期&#xff0c;加快了产品的面市速度…

金南瓜EAP库使用开发

前言 最近做了 一个半导体公司的上位机开发。厂商要求要支持EAP通讯。 先了解一下EAP是什么吧&#xff1f;百度资料 EAP&#xff08; Equipment Automation Program&#xff09;设备自动化处理&#xff0c;工厂实现设备自动化生产和管理。 1. 机台状态数据收集&#xff0c;包…