基于OpenCV对胸部CT图像的预处理

1 . 传作灵感

胸部CT中所包含的噪声比较多,基于OpenCV简单的做一些处理,降低后续模型训练的难度。

2. 图像的合成

在语义分割任务中有的时候需要将原图(imput)和标注数据(groudtruth)合成一幅图像,观察图像分割的效果,涉及的代码如下:

import matplotlib.pyplot as plt
import os
import pandas as pd
from scipy.ndimage.interpolation import zoom
from PIL import Image
from matplotlib import image
import matplotlib.pyplot as pltimg=Image.open('dataset/train_image/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg',)
mask= Image.open('dataset/train_mask/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg')plt.subplot(2, 2, 1)
plt.imshow(img,cmap='bone')
plt.subplot(2, 2, 2)
plt.imshow(mask,cmap='bone')
# 图像融合显示
plt.subplot(2, 2, 3)
#原图以0.6的比例加入,mask以0.4的比例加入
plt.imshow(img, alpha=0.6,cmap='bone')
plt.imshow(mask, alpha=0.4,cmap='gray')
plt.show()

合成的效果如图所示:

还有一种方法使用Image.blend(img, mask, 0.5)函数,具体代码如下:

img=Image.open('dataset/train_image/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg',)
mask= Image.open('dataset/train_mask/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg')
#
img = img.convert('L')
mask = mask.convert('L')img.show()
mask.show()con = Image.blend(img, mask, 0.5)
con.show()

合成的效果如下:

3. 高斯滤波

img =cv.imread('dataset/train_image/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg', cv.IMREAD_GRAYSCALE)
mask = cv.imread('dataset/train_mask/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg', cv.IMREAD_GRAYSCALE)
cv.imshow("img",img)
# 高斯滤波
img_Gauss=cv.GaussianBlur(img,(7,7),0,0)
dst2 = cv.GaussianBlur(img, (9, 9), 0, 0)
cv.imshow("img_Gauss", img_Gauss)

效果如下:

   

3.中值滤波

img_median = cv.medianBlur(img,5)
cv.imshow("img_median", img_median)

4.适应阈值滤波

#自适应阈值滤波
t2,img_ostu = cv.threshold(img_median, 0,255, cv.THRESH_OTSU)
t2,img_ostu = cv.threshold(img_median, 0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
cv.imshow("img_ostu", img_ostu)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3029649.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

zip file is empty

从下找到报错的jar包。展开这个jar包,看下是否正常,正常的是能够展开看到一些文件夹以及里面的类,如下:如果不正常,就删除这个jar包,同时找到这个jar包在本地maven仓库的地址,也删除掉&#xff…

热爱电子值得做的电子制作实验

加我zkhengyang,进嵌入式音频系统研究开发交流答疑群(课题组) AM/FM收音机散件制作,磁带随声听散件,黑白电视机散件制作,功放散件制作,闪光灯散件制作,声控灯散件,等等,可提高动手能…

Ubuntu系统下编译OpenCV4.8源码

OpenCV4.8源码编译与安装 其实很简单,只要三步即可搞定,第一步是下载指定版本的源码包;第二步是安装OpenCV4.8编译需要的编译器与第三方库支持;第三步就是编译OpenCV源码包生成安装文件并安装。 01下载OpenCV4.8源码包 在Ubunt…

Oracle -在线回缩表

conn scott/tiger DROP TABLE EMP1 PURGE; CREATE TABLE EMP1 AS SELECT * FROM EMP; alter table emp1 enable row movement; -- 启动回缩特性 insert into emp1 select * from emp1; / / commit; -- 增加到14000行 -- 分析表的结构 analyze table emp1 comput…

如何编译不同目录下的两个文件

1.直接编译 2.打包成动静态库进行链接

EasyExcel处理Mysql百万数据的导入导出案例,秒级效率,拿来即用!

一、写在开头 今天终于更新新专栏 《EfficientFarm》 的第二篇博文啦,本文主要来记录一下对于EasyExcel的高效应用,包括对MySQL数据库百万级数据量的导入与导出操作,以及性能的优化(争取做到秒级性能!)。 …

【Spring Boot 源码学习】深入 ApplicationArguments 接口及其默认实现

《Spring Boot 源码学习系列》 深入 ApplicationArguments 接口及其默认实现 一、引言二、主要内容2.1 ApplicationArguments2.2 DefaultApplicationArguments2.2.1 成员变量2.2.2 构造方法2.2.3 成员方法 2.3 SimpleCommandLinePropertySource2.4 应用场景2.4.1 准备和配置应用…

ETL免费工具kettle(PDI),安装和配置

起源: Kettle最早是一个开源的ETL工具,全称为KDE Extraction, Transportation, Transformation and Loading Environment。在2006年,Pentaho公司收购了Kettle项目,原Kettle项目发起人Matt Casters加入了Pentaho团队,成…

暴力数据结构之栈与队列(队列详解)

1.队列的定义 队列是一种特殊的线性表,它遵循先进先出(FIFO)的原则。在队列中,只允许在表的一端进行插入操作(队尾),而在另一端进行删除操作(队头)。这种数据结构确保了最…

第十一篇:操作系统新纪元:智能融合、量子跃迁与虚拟现实的交响曲

操作系统新纪元:智能融合、量子跃迁与虚拟现实的交响曲 1 引言 在数字化的浪潮中,操作系统如同一位智慧的舵手,引领着信息技术的航船穿越波涛汹涌的海洋。随着人工智能、物联网、量子计算等前沿技术的蓬勃发展,操作系统正站在一个…

98、技巧-颜色分类

思路 这道题的思路是什么,首先典型荷兰国旗问题: 该问题的关键在于我们要将所有的0放到数组的前部,所有的1放在中间,所有的2放在后部。这可以通过使用两个指针,一个指向数组开头的“0”的最后一个位置,另…

计算图与自动微分

计算图与自动微分 一、自动梯度计算1.1 数值微分(Numerical Differentiation)1.2 符号微分(Symbolic Differentiation)1.3 自动微分(Automatic Differentiation,AD)1.3.1 计算图1.3.2 正向传播1…

postman常用功能超全使用教程

Postman 使用 一、Postman 简介 Postman是一个接口测试工具,在做接口测试的时候,Postman相当于一个客户端,它可以模拟用户发起的各类HTTP请求(如:get/post/delete/put…等等),将请求数据发送至服务端,获取对应的响应结果。 二、Postman 功能简介 三、Postman 下载安装 Post…

Android GPU渲染SurfaceFlinger合成RenderThread的dequeueBuffer/queueBuffer与fence机制(2)

Android GPU渲染SurfaceFlinger合成RenderThread的dequeueBuffer/queueBuffer与fence机制(2) 计算fps帧率 用 adb shell dumpsys SurfaceFlinger --list 查询当前的SurfaceView,然后有好多行,再把要查询的行内容完整的传给 ad…

2024C题生物质和煤共热解问题的研究 详细思路

背景 随着全球能源需求的不断增长和对可再生能源的追求,生物质和煤共热解作为一种潜在的能源转化技术备受关注。生物质是指可再生能源,源自植物和动物的有机物质,而煤则是一种化石燃料。** 在共热解过程中,生物质和煤在高温和缺氧…

Java入门基础学习笔记14——数据类型转换

类型转换: 1、存在某种类型的变量赋值给另一种类型的变量; 2、存在不同类型的数据一起运算。 自动类型转换: 类型范围小的变量,可以直接赋值给类型范围大的变量。 byte类型赋值给int类型,就是自动类型转换。 pack…

【AMBA Bus ACE 总线 8 -- ICache maintenance】

请阅读【AMBA Bus ACE 总线与Cache 专栏 】 欢迎学习:【嵌入式开发学习必备专栏】 文章目录 ACE ICache maintenanceACE ICache maintenance 图 1-1 当一个OS run 多个cpu的时候,根据调度算法的不同,OS 可以根据调度算法的不同分别 run 在某个具体的CPU上,因此,它们会有…

非模块化 Vue 开发的 bus 总线通信

个人感觉,JavaScript 非模块开发更适合新人上手,不需要安装配置一大堆软件环境,不需要编译,适合于中小项目开发,只需要一个代码编辑器即可开发,例如 vsCode。网页 html 文件通过 script 标签引入 JavaScrip…

Bugku Crypto 部分题目简单题解(三)

where is flag 5 下载打开附件 Gx8EAA8SCBIfHQARCxMUHwsAHRwRHh8BEQwaFBQfGwMYCBYRHx4SBRQdGR8HAQ0QFQ 看着像base64解码 尝试后发现,使用在线工具无法解密 编写脚本 import base64enc Gx8EAA8SCBIfHQARCxMUHwsAHRwRHh8BEQwaFBQfGwMYCBYRHx4SBRQdGR8HAQ0QFQ tex…

机器学习的一些知识点分享

解决过拟合问题的常用方法有( )。 A 使用丢弃法 B 减少模型特征 C 使用正则化约束 D 增加训练样本数量 本题得分: 0分 正确答案: A,B,C,D (少选不得分) 2.填空题 (2分) 过拟合是指模型过于复杂,学习能力太强&a…