Linux 操作系统TCP、UDP

1、TCP服务器编写流程

头文件:

#include <sys/socket.h>

1.1 创建套接字

函数原型:

int socket(int domain, int type, int protocol);

参数:

        domain: 网域
               AF_INET : IPv4
               AF_INET6 : IPv6
               AF_UNIX : 本地通讯

type:选择传输协议  tcp/udp

                SOCK_STREAM ; tcp
                SOCK_DGRAM : udp

protocol: 基本废弃, 一般赋 0
返回值: 成功返回描述网络套接字 sockfd, 失败返回-1
举例: 创建描述网络的套接字:

int sfd = socket(AF_INET,SOCK_STREAM,0);

1.2 绑定

头文件:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

作用:绑定一个端口和IP地址,使套接口与指定的端口号和IP地址相关联

函数原型:

int bind(int sockfd, const struct sockaddr *my_addr, socklen_t addrlen);

参数:

        sockfd 为前面 socket 的返回值, 描述网络的套接字
        my_addr:封装 ip 地址和端口号

struct sockaddr //一般很少用
{unsigned short int sa_family; // AF_INET。char sa_data[14]; //IP 和端口
};
struct sockaddr_in //常用的结构体
{unsigned short int sin_family; //AF_INEuint16_t sin_port; //使用的 port 编号struct in_addr sin_addr; // IP 地址unsigned char sin_zero[8]; //未使用
};

端口:10000-65535之间随意选

转化:

uint32_t htonl(uint32_t hostlong);//本函数将一个 32 位数从主机字节顺序转换成无符号长整型网络字节顺序
uint16_t htons(uint16_t hostshort);//将一个无符号短整型的主机数值转换为网络字节顺序
uint32_t ntohl(uint32_t netlong);//将一个无符号长整形数从网络字节顺序转换为主机字节顺序。
uint16_t ntohs(uint16_t netshort);//将一个 16 位数由网络字节顺序转换为主机字节顺序。

IP的填写方式:

struct in_addr
{uint32_t s_addr; //=inet_addr("192.168.1.22");
};

返回值:成功则返回0,失败返回-1

举例:

#define PORT 33333
#define IP "192.168.110.123"
struct sockaddr_in ser_addr;
ser_addr.sin_family = AF_INET;
ser_addr.sin_port = htons(PORT);
ser_addr.sin_addr.s_addr = inet_addr(IP);
inet_aton(“192.168.1.22”,&ser_addr.sin_addr);
bind(sfd,(struct sockaddr)&ser_addr,sizeof(ser_addr));

1.3 监听

作用:设置允许的最大连接数(瞬间处理的阀值),listen函数。

使用服务器的这个端口和IP处于监听状态,等待网络中某一客户机的连接请求。如果客户端哟连接请求,端口就会接受这个链接。

函数原型:

int listen(int sockfd, int backlog);

参数:

        sockfd 为前面 socket 的返回值, sfd
        backlog 指定同时能处理的最大连接要求, 通常为 10 或者 5。 最大值可设至 128( 不是最多可以连接 128个客户端, 是一个瞬时处理的阈值)
返回值: 成功则返回 0, 失败返回-1

1.4 等待客户端连接

函数原型:

int accept(int sockfd, struct sockaddr *addr,socklen_t *addrlen);

参数:

        sockfd 为前面 socket 的返回值, 即 sfd
        addr: 提供空间, 用于接受客户端的 ip 地址和端口号
        addrlen: 第二个参数大小

返回值:

        返回新的套接字描述符, 专门用于与建立的客户端通信
        失败-1;

举例:

struct sockaddr_in cli_addr = {0};
socklen_t len = sizeof(cli_addr);
int cfd = accept(sfd,(struct sockaddr *)&cli_addr,&len);

1.5 读写函数

可以使用read和write函数进行。

写函数

函数原型;

ssize_t send(int s, const void *buf, size_t len, int flags);

参数:

        s: 通信套接字
        buf: 要发送的数据缓冲区
        len: 数据长度
        flags: 一般赋 0 .阻塞

返回值:成功返回真正发送的数据长度,失败-1.

读函数

函数原型:

ssize_t recv(int s, void *buf, size_t len, int flags);

参数:

        s: 通信的套接字
        buf:存放接收数据的缓冲区
        len: 数据长度
        flags: 一般赋 0 .阻塞

返回值:成功返回真正接收的数据长度,失败-1.

2 TCP客户端编写流程

2.1 创建套接字

头文件:

#include <sys/socket.h>

函数原型:

int socket(int domain, int type, int protocol);

参数:

        domain: 网域
                AF_INET : IPv4
                AF_INET6 : IPv6
        type: 选择传输协议 tcp /udp
                SOCK_STREAM ; tcp
                SOCK_DGRAM : udp
        protocol: 基本废弃, 一般赋 0

返回值:成功返回套接字fd,失败返回-1

2.2 连接

函数原型:

int connect(int sockfd, const struct sockaddr*serv_addr, socklen_t addrlen);

参数:

    sockfd 为前面 socket 的返回值, 即 fdserv_addr 为结构体指针变量, 存储着远程服务器的 IP 与端口号信息。addrlen 表示结构体变量的长度

返回值:成功则返回0,失败返回-1

举例:

    int fd = socket(AF_INET,SOCK_STREAM,0);#define PORT 33333#define IP "192.168.110.123"struct sockaddr_in ser_addr;ser_addr.sin_family = AF_INET;ser_addr.sin_port = htons(PORT);ser_addr.sin_addr.s_addr = inet_addr(IP);connect(fd,(struct sockaddr *)&ser_addr,sizeof(ser_addr));

TCP 问题: 当服务器结束之后, 再次运行会出现 bind 错误(地址被占用)
解决办法:

      int sfd = socket(AF_INET,SOCK_STREAM,0);


创建套接字之后, 用:

int val = 1;
setsockopt(sfd,SOL_SOCKET,SO_REUSEADDR,&val,sizeof(val));
setsockopt(sfd,SOL_SOCKET,SO_REUSEPORT,&val,sizeof(val));

3.UDP

特点:非面向连接,不可靠传输,传输速率高

分别有:

单播  --  一对一                广播  --  一对多          组播  --  多对多

3.1 单播

        UDP不像TCP。无需在连接状态下交换数据,因此基于UDP的接收方和发送发也无需经过连接过程。也就是说,不必调用listen()和accept()函数。UDP中有创建套接字的过程和数据交换的过程。不管是接收方还是发送方都只需要1个套接字。

3.1.1 创建套接字
头文件:

#include <sys/socket.h>

函数原型:

int socket(int domain, int type, int protocol);

参数:

        domain: 网域
        AF_INET : IPv4
        AF_INET6 : IPv6
        type: 选择传输协议 tcp /udp
        SOCK_STREAM ; tcp
        SOCK_DGRAM : udp
        protocol: 基本废弃, 一般赋 0
返回值: 成功返回套接字 fd, 失败返回

3.1.2 bind:绑定自己的IP和端口

发送方:socket   同接收方

函数原型:

ssize_t sendto( int s, //套接字const void *buf, //要发送的数据的首地址size_t len, //数据的大小int flags, // 0const struct sockaddr *to,//接收方的 IP 和 portsocklen_t tolen //上一个参数的大小
);

返回值:成功返回真正发送的数据长度,失败-1

ssize_t recvfrom(int s, //套接字void *buf, //接受的内容存放的位置的首地址size_t len, //接收的大小int flags, //0struct sockaddr *from, //提供空间即可, 存放发送方的 IP 和 PORTsocklen_t *fromlen//上一个参数的大小, 但是填指针
);

返回值:成功返回真正接收的数据长度, 失败-1

3.2 广播

udp具有广播功能,即一个发送方,多个接收方;

广播:处于局部网络中的所有设备都可以接收消息

广播的地址:网络号不变,主机号为255 

socket 创建的 UDP 套接字支持组播和广播, 但是想要使用广播, 必须用 setsockopt 设置广播的功能。

接收方:
        1》 创建套接字 socket UDP
        2》 绑定 IP 和 PORT IP 填 INADDR_ANY
        3》 recvfrom 接收

发送方:

        1》 创建套接字 socket UDP
        2》 开启广播功能: setsockopt

开启广播功能函数

int setsockopt(int sockfd,int level,int optname,const void *optval,socklen_t optlen);

函数功能:设置套接字的选项

参数:

sockfd创建的套接字

        level--选项所在的级别:
        想让套接字有广播功能, 就必须把 level 设置为 SOL_SOCKET
                SOL_SOCKET -- 广播功能所在的级别
        optname--选项所在的名称:
                SO_BROADCAST (广播功能)
        optval: 整数的地址
                int num = 1;//开启功能 &num
                0--失能(关闭此功能,系统默认关闭)
                1--使能(开启此功能)
        optlen: optval 的大小 //sizeof(num);

举例:

int a = 1;
setsockopt(fd,SOL_SOCKET,SO_BROADCAST,&a,sizeof(int));

sendto 发送


3.3 多播

对一组特定的主机发送消息 比如: 直播, 多播(D 类), IP 地址分为: 224.0.0.0~239.255.255.255

1》 创建套接字 socket UDP
 

 int setsockopt(int sockfd, int level, int optname,const void *optval, socklen_t optlen);

函数功能: 设置套接字的选项
参数:
        sockfd: socket 创建的套接字
        level: 级别
        SOL_SOCKET : 广播级别
        IPPROTO_IP : 组播级别

        optname: 选项由 level 决定, level 选的是 IPPROTO_IP, optname 有两种选择
        IP_ADD_MEMBERSHIP 加入组播
        IP_MULTICAST_IF 创建组播
        optval: 设置参数 由 optname 决定
        当 optname 为:
                IP_ADD_MEMBERSHIP( 加入组播) , optval 是 struct ip_mreqn 这个结构体
                IP_MULTICAST_IF ( 创建组播) , optval 也是 struct ip_mreqn 这个结构体

struct ip_mreqn
{struct in_addr imr_multiaddr;//多播组的地址 224.0.0.0-239.255.255.255 structin_addr imr_address;//本地的 IP 地址, 填固定的宏 INADDR_ANY 即可int imr_ifindex; //网卡编号( 物理硬件地址) , 可以用物理硬件 ID 函数:                                                     if_nametoindex("ens33"); 其中 ens33 是网卡的
名字, 通过名字获取编号
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3029595.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

文章分享:《肿瘤DNA甲基化标志物检测及临床应用专家共识(2024版)》

本文摘自于《肿瘤DNA甲基化标志物检测及临床应用专家共识&#xff08;2024版&#xff09;》 目录 1. DNA甲基化标志物概述 2 DNA甲基化标志物的临床检测 2.1 临床样本前处理注意事项 2.2 DNA甲基化标志物检测技术方法 2.2.1 DNA提取与纯化 2.2.2 DNA转化 2.2.3 DNA 甲基…

PDF文档如何签名?用Adobe信任的文档签名证书

为PDF文档电子签名的方式有多种多样&#xff0c;但并非所有方案都是可靠的。我们在市面看到的电子图章、电子印章等仅在文档中置入印章图片的方式&#xff0c;并不具有任何法律上的有效性&#xff0c;它只是显示印章的图形效果&#xff0c;随时可以被篡改、伪造。PDF文档如何签…

STC8增强型单片机开发【定时器Timer⭐】

目录 一、引言 二、定时器基础知识 三、STC8定时器配置 四、代码示例 五、总结 一、引言 在单片机开发中&#xff0c;定时器&#xff08;Timer&#xff09;是一个极其重要的组件&#xff0c;它允许开发者基于时间触发各种事件或任务。STC8增强型单片机作为一款功能丰富的…

【电路笔记】-无源高通滤波器

无源高通滤波器 文章目录 无源高通滤波器1、概述2、一阶高通滤波器的频率响应3、高通滤波器示例4、二阶高通滤波器5、RC 差异化因素高通滤波器与低通滤波器电路完全相反,因为这两个组件已互换,滤波器输出信号现在从电阻器两端获取。 1、概述 由于低通滤波器只允许低于其截止…

C++动态内存管理:与C语言动态内存管理的差异之争

当你改错一行代码的时候&#xff1a; 当你想要重构别人的代码时&#xff1a; 目录 前言 一、C/C的内存分布 二、C/C语言中的动态内存管理 三、new与delete的实现原理 总结&#xff1a; 前言 在C中&#xff0c;内存管理是一个至关重要的主题。正确地管理内存可以避免内存泄…

抖音新店怎么对接达人?对接达人秘籍流程分享,让你学会找达人

大家好&#xff0c;我是电商花花。 新手怎么对接达人带货&#xff1f;这是我们新手商家 要考虑的问题。 很多新手抱怨自己新店铺不出单&#xff0c;没有销量&#xff0c;对接达人又怕达人看不上&#xff0c;没有达人愿意帮我带货&#xff0c;在面临这样的情况下不知道该怎么办…

[C++][数据结构]哈希2:开散列/哈希桶的介绍和简单实现

前言 接着上一篇文章&#xff0c;我们知道了闭散列的弊端是空间利用率比较低&#xff0c;希望今天学习的开散列可以帮我们解决这个问题 引入 开散列法又叫链地址法(开链法)&#xff0c;首先对关键码集合用散列函数计算散列地址**&#xff0c;具有相同地址的关键码归于同一子…

【HMWeb】HTML使用Leaflet实现本地离线地图Gis应用

下载Leaflet 官网下载&#xff1a;https://leafletjs.com/reference.html CSDN&#xff1a;https://download.csdn.net/download/hmxm6/89291989 选择版本号 添加html文件 加入代码 <!DOCTYPE html> <html lang"en"> <head><meta charset&qu…

富士Apeos 2350 NDA复印机报062 360代码故障

故障描述&#xff1a; 富士Apeos 2350 NDA复印机新机器刚拆箱安装&#xff0c;开机正常&#xff0c;自检扫描头一卡一卡的往前动几下就不动了、扫描灯也不亮扫描头也不能正常复位&#xff1b;按机器的复印键直接报062 360代码&#xff1b; 解答&#xff1a; 此代码为扫描故障&a…

聊天室项目思路

发起群聊&#xff1a; 从好友表选取人发送到服务器&#xff0c;服务器随机生成不重复的群号&#xff0c;存储在数据库&#xff0c;同时建立中间表&#xff0c;处理用户与群聊的关系 申请入群&#xff1a; 输入群号&#xff0c;发消息给服务器&#xff0c;服务器查询是否存在…

笔试强训week4

day1 Q1 难度⭐⭐ 小易的升级之路_牛客题霸_牛客网 (nowcoder.com) 题目&#xff1a; 小易经常沉迷于网络游戏.有一次,他在玩一个打怪升级的游戏,他的角色的初始能力值为 a.在接下来的一段时间内,他将会依次遇见n个怪物,每个怪物的防御力为b1,b2,b3...bn. 如果遇到的怪物防…

17 【Aseprite 作图】参考图和颜色

参考图 Aseprite 作图&#xff0c;“打开 - 一张参考图”&#xff0c;再把参考图拉到右边&#xff0c;就可以得到参考图和缩略图 取消选区 通过“选择 - 取消选择”&#xff0c;可以 取消选区 复制参考图的颜色 打开参考图后&#xff0c;参考图的调色板就会出现参考图所有的…

[Linux_IMX6ULL驱动开发]-GPIO子系统和Pinctrl子系统

目录 Pinctrl子系统的概念 GPIO子系统的概念 定义自己的GPIO节点 GPIO子系统的函数 引脚号的确定 基于GPIO子系统的驱动程序 驱动程序 设备树修改 之前我们进行驱动开发的时候&#xff0c;对于硬件的操作是依赖于ioremap对寄存器的物理地址进行映射&#xff0c;以此来达…

【智能优化算法】蜜獾优化算法(Honey Badger Algorithm,HBA)

蜜獾优化算法(Honey Badger Algorithm,HBA)是期刊“MATHEMATICS AND COMPUTERS IN SIMULATION”&#xff08;IF 3.6&#xff09;的2022年智能优化算法 01.引言 蜜獾优化算法(Honey Badger Algorithm,HBA)受蜜獾智能觅食行为的启发&#xff0c;从数学上发展出一种求解优化问题的…

Jetpack Compose一:初步了解Compose

Intellij IDEA构建Android开发环境 IntelliJ IDEA 2023.2.1 Android开发变化 IDEA配置使用Gradle 新建Compose工程&#xff0c;取名ComposeStudy 可以看到的是IDEA为项目初始化了部分代码 使用Compose开发不再需要使用xml文件来设计布局了 Compose中的Text也不同于Android V…

Flutter笔记:Widgets Easier组件库(13)- 使用底部弹窗

Flutter笔记 Widgets Easier组件库&#xff08;13&#xff09;使用底部弹窗 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this …

Android解放双手的利器之ViewBinding

文章目录 1. 背景2. ViewBinding是什么3. 开启ViewBinding功能4. 生成绑定类5. 使用ViewBinding5.1Activity 中使用5.2 Fragment 中使用5.3 ViewHolder 中使用 6. ViewBinding的优点7. 与 dataBinding 对比 1. 背景 写代码最繁琐的是什么&#xff1f;重复的机械操作。我们刚接…

【计算机毕业设计】springboot国风彩妆网站

二十一世纪我们的社会进入了信息时代&#xff0c; 信息管理系统的建立&#xff0c;大大提高了人们信息化水平。传统的管理方式对时间、地点的限制太多&#xff0c;而在线管理系统刚好能满足这些需求&#xff0c;在线管理系统突破了传统管理方式的局限性。于是本文针对这一需求设…

自动驾驶系统中的数据闭环:挑战与前景

目录 自动驾驶概况 1.1自动驾驶分级 1.2自动驾驶国内发展 ​1.3自动驾驶架构模型 数据闭环的意义 2.1 搜集corner case的数据 2.2 提高模型的泛化能力 2.3 驱动算法迭代 数据闭环落地的痛点及对策 3.1 数据采集和使用的合规性问题 3.2 数据确权问题 3.3 数据采集…

Vue3知识总结-1

前面学习一段时间的前端&#xff0c;但是没有进行过太多的练习&#xff0c;并且对于里面一些重要的知识点也没有去着重的记忆&#xff0c;所以打算在学习Vue3的时候&#xff0c;做一些笔记&#xff0c;方便后面翻看。这个笔记会对于学习一些做一些&#xff0c;而不是一个整体的…