ubuntu20部署3d高斯

3d高斯的链接:https://github.com/graphdeco-inria/gaussian-splatting

系统环境

ubuntu20的系统环境,打算只运行训练的代码,而不去进行麻烦的可视化,可视化直接在windows上用他们预编译好的exe去可视化。(因为看的很多人说在ubuntu上去安装这个可视化的程序,有点麻烦,cmake版本要改到最新,还有一些其他的操作,所以既然有简单的方法就不想在ubuntu上折腾,毕竟我的ubuntu主要开发ros程序,环境搞崩了就还要自己再重装)

安装cuda

之前在跑nerf的时候,我安装的是cuda11.6,但是github上说他们用的是cuda11.8,所以我这里再装一个cuda11.8.
cuda11.8的下载地址,直接下的是runfile的。(注意不要去用wget下载,很有可能在进度99%的时候失败,直接将http链接复制到浏览器上,用浏览器下载,不会出问题)

  1. 给下载好的文件加权限
sudo chmod +x cuda_11.8.0_520.61.05_linux.run
  1. 运行这个cuda文件
sudo sh cuda_11.8.0_520.61.05_linux.run

运行这个指令后需要注意,要等一阵,终端才会进入安装画面:
在这里插入图片描述
选择continue后,输入accept
在这里插入图片描述
把这个驱动包的驱动按空格取消安装,即用本来安装好的显卡驱动
在这里插入图片描述
然后选install,出现下面的画面,因为之前有一个11.6cuda,这里他检测到了有cuda,想要更新,这里选no,否则应该会覆盖安装。123
然后就是等待安装的过程,安装完成后终端会有显示:
在这里插入图片描述
注意这里的安装目录是==“/usr/local/cuda-11.8/”==

  1. 修改环境变量
    目前在/usr/local的文件是这样的:
    在这里插入图片描述
    注意这时候这个cuda是一个软链接,直接无视也可以,通过下面指令打开配置文件
sudo gedit ~/.bashrc

然后在cuda相关的部分改成下面的形式:

# cuda11.6
#export PATH=$PATH:/usr/local/cuda-11.6/bin  
#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.6/lib64  
#export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-11.6/lib64# cuda11.8
export PATH=$PATH:/usr/local/cuda-11.8/bin  
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.8/lib64  
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-11.8/lib64

更新配置

source ~/.bashrc

当你去使用11.8的时候,就将11.6的注释掉,用11.6的就把11.8的注释掉。

  1. 切换版本并且验证
nvcc  --version

在这里插入图片描述
结果是11.8,代表切换成功了。

配置cudnn

直接用的是之前下载的cudnn8.4.1 for cuda11.x,应该对cuda11.8也是适用的。
下载的链接:https://developer.nvidia.com/rdp/cudnn-archive
推荐中文链接:https://developer.nvidia.cn/rdp/cudnn-archive
这里我选择的是cudnn8.4.1 for cuda 11.x的tar版本
在这里插入图片描述

  1. 下载完后进行解压:并且将对应的库和头文件移到cuda11.8目录中,反正需要注意的就是cuda11.8的路径。
tar -xvf cudnn-linux-x86_64-8.x.x.x_cudaX.Y-archive.tar.xzsudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda-11.8/include sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda-11.8/lib64 sudo chmod a+r /usr/local/cuda-11.8/include/cudnn*.h /usr/local/cuda-11.8/lib64/libcudnn*
  1. 检查cudnn
cat /usr/local/cuda-11.8/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述

创建一个3d高斯的conda环境

  1. 首先就是创建目录下载Gaussian Splatting的源码,记得加==–recursive==
mkdir ~/code/3DGS/gaussian-splatting/gaussian-splatting
cd ~/code/3DGS/gaussian-splatting/gaussian-splatting
git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive
  1. 创建conda环境
    直接根据他们github上的conda配置文件去创建(注意conda我在之前安装之后,就换成了清华源,pip也是换成清华源)
conda env create --file environment.yml
conda activate gaussian_splatting

然后就是漫长的等待,安装完成没有报错(ps:我也不敢相信,为啥我安装的是cuda11.8版本,而他environment.yml里安装的是11.6的cudatoolkit,这是为什么??而且pytorch 1.12.1版本也没有支持11.8,黑人问号?而且深度学习这方面接触的少,按我的理解,一般是根据cuda版本去选择支持这个cuda版本的pytorch,所以也不太理解这是为什么)
在这里插入图片描述

3D高斯训练过程

训练的数据集先用他们提供的数据集:从github中的链接进行下载023
有四个场景,两个室内两个室外,我先选择火车头来进行训练。目录就需要设置自己下载好的目录

python train.py -s /home/xz/dataset/3DGS/tandt/train

训练的过程也没有报错,整个训练过程13分钟,显卡是3090。还是不懂为什么cuda和pytorch版本不对应,训练的过程也没有报错。123

3D高斯训练结果的可视化

在windows上的可视化我是看到b站的一个视频:https://www.bilibili.com/video/BV1Z5411C7rB/?spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=2cbf4364275a2c6c4db080c149572d49。他介绍了在windows上用官方直接编译好的exe文件去对训练结果做可视化,我后续的文字也是对这个视频的文字说明,想看视频的可以去看这个老哥的视频。

  1. 下载官方编译好的exe文件。
    具体的下载位置在官方的github中:
    在这里插入图片描述
  2. 准备好训练的结果
    正常就在代码中的output目录下:
    在这里插入图片描述
  3. 将准备好的文件拷到windows电脑中,主要的文件有三个:编译好的文件、训练时的数据、训练后的数据
    在这里插入图片描述
  4. 将这些文件都解压,需要注意的就是去修改训练后的数据中的==cfg_args==配置文件,用记事本打开。主要是修改两个路径:

①下面这个需要改成训练后数据的目录:
在这里插入图片描述
②下面这个需要改成训练时数据的目录:
在这里插入图片描述
5. 使用编译好的文件去做可视化
解压并打开 viewers 的 bin 目录,看到里面有高斯viewer的exe文件在这里插入图片描述

用windows的终端打开,输入下面指令,注意后面的目录需要换成在第四步中改好配置文件的训练后数据的目录

.\SIBR_gaussianViewer_app.exe -m E:\postgraduate\3DGS\train\b9ba46d3-3
  1. 最后就是可以可视化这个3D高斯训练后的模型
    在这里插入图片描述

总结

这样就可以完成整个3d高斯的流程,整体的视图质量确实很高,而且这个场景才训练了13分钟,而最初的nerf在训练那个乐高模型的时候,3090跑了6个小时,这个时间长的原因可能迭代次数也比3D高斯多,而且整体网络也比较简单,但是3D高斯耗时低且渲染的质量高,真的是非常好的工作。后续就是进一步学习这类工作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3018043.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

TC4056 1A线性锂离子电池充电器芯片IC

一、产品描述 TC4056是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。其底部带有散热片的ESOP8/DIP8封装与较少的外部元件数目使得TC4056成为便携式应用的理想选择。TC4056可以适合USB电源和适配器电源工作。 由于采用了内部PMOS FET架构&#xff0…

基于单片机的无线数据传输系统设计

摘要:基于单片机的无线数据传输系统的设计,实现了温度和湿度的自动采集、无线通讯和报警功能。该系统包括了LCD1602显示电路、DHT11温湿度采集电路等,完成了基于无线数据传输的方法来实现温湿度的采集。 关键词:温湿度检测;N RF 24 L 01;单片机 0 引言 随着科技水平的提高,…

DMAR: [INTR-REMAP] Present field in the IRTE entry is clear 的解决办法

问题描述 在使用FPGA开发PCIe的MSI-X中断相关功能时,一次测试过程中dmesg打印出如下错误,使用cat /proc/interrupts查看FPGA的PCIe驱动程序未收到MSIX中断。使用的系统为基于Intel x86_64的linux(RHEL8.9),基于Xilinx …

【边东随笔】北美鳄龟的生存智慧:细心 | 信心 | 狠心 | 耐心

非常谨慎,在水域中会先找到躲避将自身安置于有利地形 ( 细心 )。 浮出水面换气,水体稍有异动就会退回水中,优秀掠食者对自身优势牢牢的把握( 信心 )。 非常优雅,猎食动作不存在任何花里胡哨&a…

解决Node.js mysql客户端不支持认证协议引发的“ER_NOT_SUPPORTED_AUTH_MODE”问题

这是一个版本问题 我用koa2和mysql2链接就没有问题 不知道这个老项目运行为啥有这个问题 解决方案 打开mysql运行这个两个命令: ALTER USER rootlocalhost IDENTIFIED WITH mysql_native_password BY 123321; FLUSH PRIVILEGES; 须知(给小白看的!) …

【Pytorch】4.torchvision.datasets的使用

什么是torchvision.datasets、 是pytorch官方给出的关于cv领域的训练数据集,我们可以用官方提供的数据集进行学习与训练 如何查看 我们可以进入Pytorch官网 切换一下版本到v0.9.0,就可以看到官方给出的数据集了 同时也有官方训练好的cv模型可以供我们…

Unity 性能优化之图片优化(八)

提示:仅供参考,有误之处,麻烦大佬指出,不胜感激! 文章目录 前言一、可以提前和美术商量的事1.避免内存浪费(UI图片,不是贴图)2.提升图片性能 二、图片优化1.图片Max Size修改&#x…

2024年全域电商矩阵109节线上课

《24年全域电商矩阵109节线上课》是一门全面介绍电子商务领域的课程。从电子商务的基本概念到全球电子商务趋势,再到电子商务的营销策略和实际操作技巧,本课程涵盖了丰富多样的主题。学员将通过109节在线课程系统全面了解电子商务,并获得在这…

AI换脸免费软件Rope中文汉化蓝宝石版本全新UI界面,修复部分已知错误【附下载地址与详细使用教程】

rope蓝宝石版:点击下载 注意:此版本支持N卡、A卡、CPU,且建议使用中高端显卡,系统要求win10及以上。 Rope-蓝宝石 更新内容: 0214版更新: ①(已修复)恢复到以前的模型荷载参数。有…

使用 Kubeadm 搭建个公网 k8s 集群(单控制平面集群)

前言 YY:国庆的时候趁着阿里云和腾讯云的轻量级服务器做促销一不小心剁了个手😎😢,2 Cores,4G RAM 还是阔以的,既然买了,那不能不用呀🚩,之前一直想着搭建个 k8s 集群玩…

C语言——联合体和枚举

1. 联合体 联合体和结构体类似。 联合体类型的声明: 联合体的特点: 像结构体⼀样,联合体也是由⼀个或者多个成员构成,这些成员可以是不同的类型。 但是编译器只为最⼤的成员分配⾜够的内存空间。联合体的特点是所有成员共⽤同⼀…

UDP通讯的demo

udp通讯的demo,这个只是简单的实现。 后面我还会加入udp组播功能。 因为懒,所以我自己发,自己接收了。 经过测试,可以看到,发送消息和接收消息功能都没问题。 广播: 这个是点对点的通过对方的ip和端口发…

Minio(官方docker版)容器部署时区问题研究记录

文章目录 感慨&概述补充:MINIO_REGION和容器时间的关系 问题一:minio容器和本地容器时间不一致问题说明原因探究解决方法结果验证 问题二:minio修改时间和本地查询结果不一致具体问题原因探究解决办法时间转化工具类调用测试和验证上传文…

数据库管理-第184期 23ai:干掉MongoDB的不一定是另一个JSON数据库(20240507)

数据库管理184期 2024-05-07 数据库管理-第184期 23ai:干掉MongoDB的不一定是另一个JSON数据库(20240507)1 JSON需求2 关系型表设计3 JSON关系型二元性视图3 查询视图总结 数据库管理-第184期 23ai:干掉MongoDB的不一定是另一个JSON数据库(20…

win10下,svn上传.so文件失败

问题:win10下使用TortoiseSVN,svn上传.so文件失败 解决:右键,选择Settings,Global ignore pattern中删除*.so,保存即可。

【机器视觉】yolo-world-opencvsharp-.net4.8 C# 窗体应用程序

这段代码是基于 OpenCvSharp, OpenVinoSharp 和 .NET Framework 4.8 的 Windows Forms 应用程序。其主要目的是加载和编译机器学习模型,对输入数据进行推理,并显示结果。 下面是该程序的主要功能和方法的详细总结: 初始化 OpenVINO 运行时核心…

[法规规划|数据概念]金融行业数据资产和安全管理系列文件解析(2)

“ 金融行业在自身数据治理和资产化建设方面一直走在前列。” 一直以来,金融行业由于其自身需要,都是国内开展信息化建设最早,信息化程度最高的行业。 在当今数据要素资产化的浪潮下,除了行业自身自身数据治理和资产化建设方面&am…

set-cookie字段,cookie文件介绍+原理,如何查看cookie文件,在基于http协议服务器的代码实现,cookie存在问题+解决(会话机制)

目录 Set-Cookie 引入 介绍 原理 描述 图解 保存"cookie文件"的方法 内存级 文件级 查看cookie文件 示例 实现 介绍 代码 核心代码 全部代码 示例 cookie存在的问题 介绍 存在的必要性 如何解决 问题梳理 引入 会话机制 -- 解决信息泄漏…

2024年第九届数维杯数学建模A题思路分享

文章目录 1 赛题思路2 比赛日期和时间3 竞赛信息4 建模常见问题类型4.1 分类问题4.2 优化问题4.3 预测问题4.4 评价问题 5 建模资料 1 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 2 比赛日期和时间 报名截止时间:2024…

Git与GitHub交互

注册 https://github.com/ 本地库与远程库交互方式 创建本地库并提交文件 创建远程库 在本地库创建远程库地址别名 查看现有远程库地址的别名 git remote -v 创建远程库地址别名 git remote add [别名] [远程地址] 远程路地址位置 示例 成员1推送 git push [别名] [分支…