Python批量计算多张遥感影像的NDVI

  本文介绍基于Python中的gdal模块,批量基于大量多波段遥感影像文件,计算其每1景图像各自的NDVI数值,并将多景结果依次保存为栅格文件的方法。

  如下图所示,现在有大量.tif格式的遥感影像文件,其中均含有红光波段近红外波段(此外也可以含有其他光谱波段,有没有都不影响);我们希望,批量计算其每1景遥感影像的NDVI

  在之前的文章中,我们多次介绍过在不同软件或平台中计算NDVI的方法,大家可以参考文章ArcGIS中ArcMap快速自动计算单一波段或多波段栅格遥感影像NDVI的方法(https://blog.csdn.net/zhebushibiaoshifu/article/details/127290179),或者文章Google Earth Engine谷歌地球引擎GEE栅格代数与NDVI波段计算手动求取(https://blog.csdn.net/zhebushibiaoshifu/article/details/119145230)。而在本文中,我们就介绍一下基于Python中的gdal模块,实现NDVI批量计算的方法。

  这里所需的代码如下。

# -*- coding: utf-8 -*-
"""
Created on Thu Apr 18 12:37:22 2024@author: fkxxgis
"""import os
from osgeo import gdaloriginal_folder = r"E:\04_Reconstruction\99_MODIS\new_data\GF_Small\Rec"
output_folder = r"E:\04_Reconstruction\99_MODIS\new_data\GF_Small\NDVI"for filename in os.listdir(original_folder):if filename.endswith('.tif'):dataset = gdal.Open(os.path.join(original_folder, filename), gdal.GA_ReadOnly)width = dataset.RasterXSizeheight = dataset.RasterYSizedriver = gdal.GetDriverByName('GTiff')output_dataset = driver.Create(os.path.join(output_folder, "NDVI_" + filename), width, height, 1, gdal.GDT_Float32)band_red = dataset.GetRasterBand(3)data_red = band_red.ReadAsArray()band_nir = dataset.GetRasterBand(4)data_nir = band_nir.ReadAsArray()data_ndvi = (data_nir - data_red) / (data_nir + data_red)output_band = output_dataset.GetRasterBand(1)output_band.WriteArray(data_ndvi)output_band.FlushCache()output_dataset.SetGeoTransform(dataset.GetGeoTransform())output_dataset.SetProjection(dataset.GetProjection())dataset = Noneoutput_dataset = Noneprint(filename, "finished!")

  代码整体也非常简单。首先,我们定义输入文件与输入结果文件的路径,前者就是待计算NDVI的遥感影像文件路径,后者则是NDVI结果的遥感影像文件路径。

  接下来,遍历original_folder文件夹中的文件。其中,os.listdir()用于获取文件夹中的文件列表,其后的endswith('.tif')用于筛选出以.tif扩展名结尾的文件。

  随后,对于每个以.tif结尾的文件,首先使用gdal.Open()打开文件——其中的os.path.join()用于构建完整的文件路径;接下来获取影像数据集的宽度和高度,并使用gdal.GetDriverByName()获取GTiff驱动程序,用于创建输出影像文件;同时,使用driver.Create()创建一个与原始影像具有相同大小的输出影像文件。

  紧接着,从数据集中获取红光近红外波段的数据。dataset.GetRasterBand()用以获取指定的栅格波段,而band.ReadAsArray()则将波段数据读取为数组。

  其次,即可计算NDVI。使用获取的红光近红外波段数据计算NDVI,并将NDVI数据保存在data_ndvi数组中。

  最后,将NDVI数据写入输出影像文件。output_dataset.GetRasterBand()获取输出影像文件的波段,band.WriteArray()将数据写入波段,band.FlushCache()刷新波段缓存。

  此外,记得通过output_dataset.SetGeoTransform()output_dataset.SetProjection()设置输出影像文件的地理变换和投影信息。

  同时,需要清理和关闭数据集,将数据集和输出数据集设置为None以释放资源。还可以打印文件名finished!,表示当前文件处理完成。

  执行上述代码,我们即可在结果文件夹中看到计算得到的NDVI数据;如下图所示。

  至此,大功告成。

欢迎关注:疯狂学习GIS

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3016598.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

pytest教程-39-钩子函数-pytest_runtest_setup

领取资料,咨询答疑,请➕wei: June__Go 上一小节我们学习了pytest_runtest_protocol钩子函数的使用方法,本小节我们讲解一下pytest_runtest_setup钩子函数的使用方法。 pytest_runtest_setup 钩子函数在每个测试用例的 setup 阶段被调用。这…

代码随想录算法训练营DAY44|C++动态规划Part6|完全背包理论基础、518.零钱兑换II、377. 组合总和 Ⅳ

文章目录 完全背包理论基础完全背包问题的定义与01背包的核心区别为什么完全背包的循环顺序可以互换?CPP代码 ⭐️518.零钱兑换II思路CPP代码 ⭐️377. 组合总和 Ⅳ思路CPP代码 扩展题 完全背包理论基础 卡码网第52题 文章链接:完全背包理论基础 视频链接…

练习题(2024/5/7)

1验证二叉搜索树 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下: 节点的左 子树 只包含 小于 当前节点的数。节点的右子树只包含 大于 当前节点的数。所有左子树和右子树自身必须也是二叉搜索树。 示例 …

互联网十万个为什么之什么是云计算

云计算是一种通过互联网提供计算资源和服务的技术。它允许用户随时随地访问和使用云平台上的数据、软件和硬件资源。在数字化时代,互联网已经成为基础设施。云计算使得数据中心能够像一台计算机一样去工作。通过互联网将算力以按需使用、按量付费的形式提供给用户&a…

城市二手房数据分析与房价预测

实现功能 数据分析 二手房价格-时间分析 二手房数量-时间分析 二手房分布-区域分析 二手房户型分析 二手房朝向分析 二手房价格-区域分析 二手房热词词云 房价预测 采用合适的算法模型,对模型进行评估。通过输入影响因素输出预测价格。 采用技术与框架 M…

【MM32F3270 Micropython】pwm输出

文章目录 前言一、PWM脉宽调制技术介绍二、machine.PWM 类2.1 machine.PWM 类的构造对象2.2 PWM 对象初始化2.3 关闭PWM设备2.4 设置pwm的周期2.5 设置占空比 三、pwm示例代码总结 前言 MicroPython是一种精简的Python 3编程语言实现,旨在在微控制器和嵌入式系统上…

从0到1提审苹果商店(appstore)上线一款新APP

本篇主要复盘和介绍一款APP如何从0到1上线到苹果商店,将我自己项目遇到的坑跟大家分享,希望能为同样做开发或者运营的你提供经验,少走弯路。 如果你是24年1月1日之后开始首次提审APP,还需要先将自己的APP在工信部备案,苹果后台增加了工信部备案号的填写,备案方法和经验如…

揭秘 IEEE/ACM Trans/CCF/SCI,谁才是科研界的王者?

会议之眼 快讯 在学术探索的浩瀚星海中,每一篇论文都像是一颗璀璨的星辰,而那些被顶级期刊或会议收录的论文,则无疑是最耀眼的几颗。 在众多评价标准中,IEEE/ACM Transactions、CCF推荐期刊和会议、SCI分区期刊,它们…

18 内核开发-内核重点数据结构学习

课程简介: Linux内核开发入门是一门旨在帮助学习者从最基本的知识开始学习Linux内核开发的入门课程。该课程旨在为对Linux内核开发感兴趣的初学者提供一个扎实的基础,让他们能够理解和参与到Linux内核的开发过程中。 课程特点: 1. 入门级别&…

Qt---day2-信号与槽

1、思维导图 2、 拖拽式 源文件 #include "mywidget.h" #include "ui_mywidget.h" MyWidget::MyWidget(QWidget *parent) : QWidget(parent) , ui(new Ui::MyWidget) { ui->setupUi(this); //按钮2 this->btn2new QPushButton("按钮2",th…

什么是多模态大模型,有了大模型,为什么还要多模态大模型?

随着人工智能技术的愈演愈烈,其技术可以说是日新月异,每隔一段时间就会有新的技术和理念被创造出来;而多模态大模型也是其中之一。 什么是多模态 想弄明白什么是多模态大模型,那么首先就要弄明白什么是多模态。 简单来说&#x…

【Git】Commit后进行事务回滚

起因 因为一直使用git add .,在学习pytorch中添加了一个较大的数据集后,导致git push失败,而这个大数据集并不是必须要上传到仓库的,但是因为自己在设置.gitignore前已经进行了git comit,所以,需要进行事务…

嵌入式linux学习第三天汇编语言点灯

嵌入式linux学习第三天汇编语言点灯 今天学习如何在linux板子上点灯。 I.MX6U GPIO 详解 我们发现I.MX6U GPIO是分为两类的,:SNVS 域的和通用的。在讨论i.MX6U或类似的复杂微处理器时,了解其GPIO(通用输入输出)引脚…

Windows环境编译 VVenC 源码生成 Visual Studio 工程

VVenC介绍 Fraunhofer通用视频编码器(VVenC)的开发是为了提供一种公开可用的、快速和有效的VVC编码器实现。VVenC软件基于VTM,其优化包括软件重新设计以减轻性能瓶颈、广泛的SIMD优化、改进的编码器搜索算法和基本的多线程支持以利用并行。此外,VVenC支…

深度学习之基于YOLOv5目标检测可视化系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景与意义 随着深度学习技术的快速发展,目标检测在多个领域中的应用日益广泛,包括…

125.两两交换链表中的节点(力扣)

题目描述 代码解决及思路 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListNode *next) : val(x), …

很快就可以试用Domino 15了

大家好,才是真的好。 前几天在比利时的安普卫特举办的Engage2024大会已经结束,流出的现场照片很多,主要是会议场地照片很多,说是令人震撼;可惜这次一手的PPT和会议内容不多.是的,本来我也是在等与会者写的…

VMware 虚拟机打开一段时间后卡死,VNX进程CPU占比高

一、问题描述 打开虚拟机后可以正常运行 运行几分钟后突然卡死 然后通过任务管理器可以观察到VMware Workstation VMX应用进程的CPU占比高,CPU也出现异常 关闭虚拟机重新开启,还是一样卡死 二、系统环境 系统: Windows10 VMware: Workstation 17 Pro …

如何提取视频二维码链接?二维码在线提取链接的方法

随着现在二维码用途的不断增多,很多不同的内容都可以生成二维码来展示,比如现在视频二维码就是比较常见的一种类型,一般用于产品介绍、教程演示、宣传推广等等。二维码的方式在某些情况下也有局限性,当无法扫码时就无法查看内容&a…

Linux信号捕捉

要处理信号, 我们进程就得知道自己是否收到了信号, 收到了哪些信号, 所以进程需要再合适的时候去查一查自己的pending位图 block 位图 和 hander表, 什么时候进行检测呢? 当我们的进程从内核态返回到用户态的时候&…