Redis系列之key过期策略介绍

为什么要有过期策略?

Redis是一个内存型的数据库,数据是放在内存里的,但是内存也是有大小的,所以,需要配置redis占用的最大内存,主要通过maxmemory配置

maxmomory <bytes>  # redis占用的最大内存

官网:https://redis.io/docs/manual/eviction/ 介绍

For example, to configure a memory limit of 100 megabytes, you can use the following directive inside the redis.conf file:

maxmomory 100mb

Setting maxmemory to zero results into no memory limits. This is the default behavior for 64 bit systems, while 32 bit systems use an implicit memory limit of 3GB.

翻译一下,大致意思是如果配置为0,那么模式最大内存大小就是电脑的内存,如果是32bit隐式大小就是3G。

如果我们不淘汰过期的key数据,堆积到一定程度,就会占满内存,满了,就不能再放数据,所以我们需要key过期机制,去删除过期的数据,保证redis的高可用。

什么是Redis key过期策略?

我们知道redis有一个特性,redis中的数据,我们都是可以设置过期时间的,如果时间到了,这个数据就会从Redis中移除。那么redis key的过期策略就是我们怎么将redis中的过期数据移除。

key的惰性过期策略

惰性过期,就是在redis里面,在每次访问操作key的时候,才判断这个key是否过期了,如果过期了就删除数据。redis中主要是通过db.c的expireIfNeeded方法去判断,调用到相关命令时才会去调用,平时不会去判断是否过期

查看一下源码,expireIfNeeded方法,在db.c源码,基于Redis6.0

int expireIfNeeded(redisDb *db, robj *key) {if (!keyIsExpired(db,key)) return 0;/* If we are running in the context of a slave, instead of* evicting the expired key from the database, we return ASAP:* the slave key expiration is controlled by the master that will* send us synthesized DEL operations for expired keys.** Still we try to return the right information to the caller,* that is, 0 if we think the key should be still valid, 1 if* we think the key is expired at this time. */// 如果有配置masterhost,说明是从节点,那么不执行key删除操作if (server.masterhost != NULL) return 1;/* Delete the key */server.stat_expiredkeys++;propagateExpire(db,key,server.lazyfree_lazy_expire);notifyKeyspaceEvent(NOTIFY_EXPIRED,"expired",key,db->id);// 判断lazyfree_lazy_expire是否开启,开启执行异步删除,不开启执行同步删除,4.0之后新增的功能,默认是关闭int retval = server.lazyfree_lazy_expire ? dbAsyncDelete(db,key) :dbSyncDelete(db,key);if (retval) signalModifiedKey(NULL,db,key);return retval;
}

惰性删除策略可以节省CPU资源,因为只需要访问key的时候才去判断是否过期,所以平时是没啥CPU损耗的,但是如果没有再次访问,改过期的key就一直堆积在内存里面,不会被清除,从而占用大量内存空间,所以我们需要另外一种策略来配合使用,解决内存占用问题,就是下面说的key定时过期策略。

key的定期过期策略

Redis中也提供了定期清除过期key的策略,在redis源码里的server.c,里面有个serverCron方法,这个方法除了做Rehash以外,还会做很多其他的操作,比如

  1. 清理数据库中的过期键值对
  2. 关闭和清理连接失效的客户端
  3. 尝试进行持久化操作
  4. 更新服务器的各类统计信息(时间、内存占用、数据库占用情况等)

Redis多久去清除过期的数据,执行频率根据redis.conf里的配置hz

在这里插入图片描述

然后实现流程大概是咋样的?具体实现流程如下:

  1. serverCron方法去执行定时清理,执行频率redis.confhz参数配置,默认是10,也就是1s执行10次,100ms执行1次

  2. 执行清理的时候,去扫描所有设置了过期时间的key,不会去扫描所有的key

  3. 根据桶的维度去扫描key,直到扫到20个key(可配)且最多取400个桶。假如第一个桶是15个key,没有达到20个key,所以会继续扫描第二个桶,第二个桶20个key,由于是以桶为维度进行扫描的,第二个桶会被全部扫描,所以总共扫描了35个key

  4. 找到扫描的key里面过期的key,进行删除操作

  5. 判断扫描的过期数据跟扫描总数的比例是否超过10%,是,继续执行3、4步;否,删除完成。

执行过程,画一个流程图:

在这里插入图片描述

查看源码,验证一下,在redis源码里的server.c有一个serverCron方法,里面有个databasesCron函数

/* Handle background operations on Redis databases. */
databasesCron();

同个类里,查看databasesCron函数

void databasesCron(void) {/* Expire keys by random sampling. Not required for slaves* as master will synthesize DELs for us. */if (server.active_expire_enabled) {if (iAmMaster()) { // 是否主服务器activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);} else { // 从服务器expireSlaveKeys();}}/* Defrag keys gradually. */activeDefragCycle();/* Perform hash tables rehashing if needed, but only if there are no* other processes saving the DB on disk. Otherwise rehashing is bad* as will cause a lot of copy-on-write of memory pages. */if (!hasActiveChildProcess()) {/* We use global counters so if we stop the computation at a given* DB we'll be able to start from the successive in the next* cron loop iteration. */static unsigned int resize_db = 0;static unsigned int rehash_db = 0;int dbs_per_call = CRON_DBS_PER_CALL;int j;/* Don't test more DBs than we have. */if (dbs_per_call > server.dbnum) dbs_per_call = server.dbnum;/* Resize */for (j = 0; j < dbs_per_call; j++) {tryResizeHashTables(resize_db % server.dbnum);resize_db++;}/* Rehash */if (server.activerehashing) {for (j = 0; j < dbs_per_call; j++) {int work_done = incrementallyRehash(rehash_db);if (work_done) {/* If the function did some work, stop here, we'll do* more at the next cron loop. */break;} else {/* If this db didn't need rehash, we'll try the next one. */rehash_db++;rehash_db %= server.dbnum;}}}}
}

查看activeExpireCycle方法,在expire.c

void activeExpireCycle(int type) {/* Adjust the running parameters according to the configured expire* effort. The default effort is 1, and the maximum configurable effort* is 10. */unsigned longeffort = server.active_expire_effort-1, /* Rescale from 0 to 9. */config_keys_per_loop = ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP +ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP/4*effort,config_cycle_fast_duration = ACTIVE_EXPIRE_CYCLE_FAST_DURATION +ACTIVE_EXPIRE_CYCLE_FAST_DURATION/4*effort,config_cycle_slow_time_perc = ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC +2*effort,config_cycle_acceptable_stale = ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE-effort;/* This function has some global state in order to continue the work* incrementally across calls. */static unsigned int current_db = 0; /* Last DB tested. */static int timelimit_exit = 0;      /* Time limit hit in previous call? */static long long last_fast_cycle = 0; /* When last fast cycle ran. */int j, iteration = 0;int dbs_per_call = CRON_DBS_PER_CALL;long long start = ustime(), timelimit, elapsed;/* When clients are paused the dataset should be static not just from the* POV of clients not being able to write, but also from the POV of* expires and evictions of keys not being performed. */if (clientsArePaused()) return;if (type == ACTIVE_EXPIRE_CYCLE_FAST) {/* Don't start a fast cycle if the previous cycle did not exit* for time limit, unless the percentage of estimated stale keys is* too high. Also never repeat a fast cycle for the same period* as the fast cycle total duration itself. */if (!timelimit_exit &&server.stat_expired_stale_perc < config_cycle_acceptable_stale)return;if (start < last_fast_cycle + (long long)config_cycle_fast_duration*2)return;last_fast_cycle = start;}/* We usually should test CRON_DBS_PER_CALL per iteration, with* two exceptions:** 1) Don't test more DBs than we have.* 2) If last time we hit the time limit, we want to scan all DBs* in this iteration, as there is work to do in some DB and we don't want* expired keys to use memory for too much time. */if (dbs_per_call > server.dbnum || timelimit_exit)dbs_per_call = server.dbnum;/* We can use at max 'config_cycle_slow_time_perc' percentage of CPU* time per iteration. Since this function gets called with a frequency of* server.hz times per second, the following is the max amount of* microseconds we can spend in this function. */timelimit = config_cycle_slow_time_perc*1000000/server.hz/100;timelimit_exit = 0;if (timelimit <= 0) timelimit = 1;if (type == ACTIVE_EXPIRE_CYCLE_FAST)timelimit = config_cycle_fast_duration; /* in microseconds. *//* Accumulate some global stats as we expire keys, to have some idea* about the number of keys that are already logically expired, but still* existing inside the database. */long total_sampled = 0;long total_expired = 0;for (j = 0; j < dbs_per_call && timelimit_exit == 0; j++) {/* Expired and checked in a single loop. */unsigned long expired, sampled;redisDb *db = server.db+(current_db % server.dbnum);/* Increment the DB now so we are sure if we run out of time* in the current DB we'll restart from the next. This allows to* distribute the time evenly across DBs. */current_db++;/* Continue to expire if at the end of the cycle there are still* a big percentage of keys to expire, compared to the number of keys* we scanned. The percentage, stored in config_cycle_acceptable_stale* is not fixed, but depends on the Redis configured "expire effort". */do {unsigned long num, slots;long long now, ttl_sum;int ttl_samples;iteration++;/* If there is nothing to expire try next DB ASAP. */if ((num = dictSize(db->expires)) == 0) {db->avg_ttl = 0;break;}slots = dictSlots(db->expires);now = mstime();/* When there are less than 1% filled slots, sampling the key* space is expensive, so stop here waiting for better times...* The dictionary will be resized asap. */if (num && slots > DICT_HT_INITIAL_SIZE &&(num*100/slots < 1)) break;/* The main collection cycle. Sample random keys among keys* with an expire set, checking for expired ones. */expired = 0;sampled = 0;ttl_sum = 0;ttl_samples = 0;// 最多那20个if (num > config_keys_per_loop)num = config_keys_per_loop;/* Here we access the low level representation of the hash table* for speed concerns: this makes this code coupled with dict.c,* but it hardly changed in ten years.** Note that certain places of the hash table may be empty,* so we want also a stop condition about the number of* buckets that we scanned. However scanning for free buckets* is very fast: we are in the cache line scanning a sequential* array of NULL pointers, so we can scan a lot more buckets* than keys in the same time. */long max_buckets = num*20;long checked_buckets = 0;// 如果拿到的key数量大于20 或者 checked_buckets大于400,跳出循环while (sampled < num && checked_buckets < max_buckets) {for (int table = 0; table < 2; table++) {if (table == 1 && !dictIsRehashing(db->expires)) break;unsigned long idx = db->expires_cursor;idx &= db->expires->ht[table].sizemask;// 根据index拿到hash桶dictEntry *de = db->expires->ht[table].table[idx];long long ttl;/* Scan the current bucket of the current table. */checked_buckets++;// 循环hash桶里的keywhile(de) {/* Get the next entry now since this entry may get* deleted. */dictEntry *e = de;de = de->next;ttl = dictGetSignedIntegerVal(e)-now;if (activeExpireCycleTryExpire(db,e,now)) expired++;if (ttl > 0) {/* We want the average TTL of keys yet* not expired. */ttl_sum += ttl;ttl_samples++;}sampled++;}}db->expires_cursor++;}total_expired += expired;total_sampled += sampled;/* Update the average TTL stats for this database. */if (ttl_samples) {long long avg_ttl = ttl_sum/ttl_samples;/* Do a simple running average with a few samples.* We just use the current estimate with a weight of 2%* and the previous estimate with a weight of 98%. */if (db->avg_ttl == 0) db->avg_ttl = avg_ttl;db->avg_ttl = (db->avg_ttl/50)*49 + (avg_ttl/50);}/* We can't block forever here even if there are many keys to* expire. So after a given amount of milliseconds return to the* caller waiting for the other active expire cycle. */if ((iteration & 0xf) == 0) { /* check once every 16 iterations. */elapsed = ustime()-start;if (elapsed > timelimit) {timelimit_exit = 1;server.stat_expired_time_cap_reached_count++;break;}}/* We don't repeat the cycle for the current database if there are* an acceptable amount of stale keys (logically expired but yet* not reclaimed). */// 比例超过10%,expired过期的key数量,sampled总的扫描数量} while (sampled == 0 ||(expired*100/sampled) > config_cycle_acceptable_stale);}elapsed = ustime()-start;server.stat_expire_cycle_time_used += elapsed;latencyAddSampleIfNeeded("expire-cycle",elapsed/1000);/* Update our estimate of keys existing but yet to be expired.* Running average with this sample accounting for 5%. */double current_perc;if (total_sampled) {current_perc = (double)total_expired/total_sampled;} elsecurrent_perc = 0;server.stat_expired_stale_perc = (current_perc*0.05)+(server.stat_expired_stale_perc*0.95);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3015873.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Pycharm无法链接服务器环境(host is unresponsived)

困扰了很久的一个问题&#xff0c;一开始是在服务器ubuntu20.04上安装pycharm community&#xff0c;直接运行服务器上的pycharm community就识别不了anaconda中的环境 后来改用pycharm professional也无法远程连接上服务器的环境&#xff0c;识别不了服务器上的环境&#xff…

Nessus 部署实验

一、下载安装https://www.tenable.com/downloads/nessus 安装好之后&#xff0c;Nessus会自动打开浏览器&#xff0c;进入到初始化选择安装界面&#xff0c;这里我们要选择 Managed Scanner 点击继续&#xff0c;下一步选择Tenable.sc 点击继续&#xff0c;设置用户名和密码 等…

2024DCIC海上风电出力预测Top方案 + 光伏发电出力高分方案学习记录

海上风电出力预测 赛题数据 海上风电出力预测的用电数据分为训练组和测试组两大类&#xff0c;主要包括风电场基本信息、气象变量数据和实际功率数据三个部分。风电场基本信息主要是各风电场的装机容量等信息&#xff1b;气象变量数据是从2022年1月到2024年1月份&#xff0c;…

翻译《The Old New Thing》- Rendering menu glyphs is slightly trickier

Rendering menu glyphs is slightly trickier - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20050802-13/?p34743 Raymond Chen 2005年08月02日 上次&#xff0c;我们看到了如何绘制有主题和无主题的单选按钮&#xff0c;我提到菜单位图更…

cmake进阶:目录属性说明一

一. 简介 接下来简单学习一下 cmake 中的属性相关的概念。 属性大概可以分为多种&#xff1a;全局属性、目录属性&#xff08;源码属性&#xff09;、目标属性以及其它一些分类。 二. cmake进阶&#xff1a;目录属性 cmake中的属性可以 在如下网址查询到&#xff1a; http…

【深度学习实战(33)】训练之model.train()和model.eval()

一、model.train()&#xff0c;model.eval()作用&#xff1f; model.train() 和 model.eval() 是 PyTorch 中的两个方法&#xff0c;用于设置模型的训练模式和评估模式。 model.train() 方法将模型设置为训练模式。在训练模式下&#xff0c;模型会启用 dropout 和 batch norm…

python爬虫学习------scrapy第三部分(第三十一天)

&#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; &#x1f388;&#x1f388;所属专栏&#xff1a;python爬虫学习&#x1f388;&#x1f388; ✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天…

ttkbootstrap界面美化系列之PanedWindow(七)

在界面设计中经常用PanedWindow控件来对整个界面进行切割布局&#xff0c;让整个界面看上去有层次感&#xff0c;不至于说杂乱无章。在我之前的文章中有对tkinter的该控件做了详细的介绍&#xff0c;链接如下基于Tkinter的PanedWindow组件进行窗口布局-CSDN博客 本文主要是介绍…

MapReduce的Shuffle过程

Shuffle是指从 Map 产生输出开始,包括系统执行排序以及传送Map输出到Reduce作为输入的过程. Shuffle 阶段可以分为 Map 端的 Shuffle 阶段和 Reduce 端的 Shuffle 阶段. Shuffle 阶段的工作过程,如图所示: Map 端的 Shuffle 阶段 1&#xff09;每个输入分片会让一个 Map 任务…

Linux学习之路 -- 文件 -- 文件描述符

前面介绍了与文件相关的各种操作&#xff0c;其中的各个接口都离不开一个整数&#xff0c;那就是文件描述符&#xff0c;本文将介绍文件描述符的一些相关知识。 目录 <1>现象 <2>原理 文件fd的分配规则和利用规则实现重定向 <1>现象 我们可以先通过prin…

04_SpringCloud

文章目录 单体架构与微服务架构的介绍单体架构微服务架构 微服务的实现服务之间的调用服务注册中心Eureka 注册中心Eureka的自我保护机制Nacos注册中心 单体架构与微服务架构的介绍 单体架构 单体架构 所有的代码最终打包成一个文件(jar包)&#xff0c;整个系统的所有功能单元…

爆赞好文之java反序列化之CB超详细易懂分析

java反序列化之CB超详细易懂分析 CB1环境搭建前言分析PropertyUtilsBeanComparatorPriorityQueue CB2环境搭建前言exp CB1 环境搭建 pom.xml <dependencies><dependency><groupId>commons-beanutils</groupId><artifactId>commons-beanutils&l…

生成gitee公钥

1、打开设置 2、设置SSH公钥 3、生成公钥 4、复制终端输出的公钥&#xff0c;放到这里&#xff0c;标题随便取。 5、测试 ssh -T gitgitee.com 最后用这个测试

IT 项目管理介绍和资料汇总

IT项目管理到底是什么&#xff1f;是对组织承担的任何信息技术项目的成功监督。IT项目经理负责规划、预算、执行、领导、故障排除和维护这些项目。IT项目经理可能会做的事情包括&#xff1a; 1、硬件安装 2、软件、网站和应用程序开发 3、网络和云计算解决方案的升级和/或推出…

软考中级-软件设计师(八)算法设计与分析 考点最精简

一、算法设计与分析的基本概念 1.1算法 算法&#xff08;Algorithm&#xff09;是对特定问题求解步骤的一种描述&#xff0c;有5个重要特性&#xff1a; 有穷性&#xff1a;一个算法必须总是在执行又穷步骤后结束&#xff0c;且每一步都可在又穷时间内完成 确定性算法中每一…

KAN: Kolmogorov–Arnold Networks

KAN: Kolmogorov–Arnold Networks 论文链接&#xff1a;https://arxiv.org/abs/2404.19756 代码链接&#xff1a;https://github.com/KindXiaoming/pyKAN 项目链接&#xff1a;https://kindxiaoming.github.io/pyKAN/intro.html Abstract 受Kolmogorov-Arnold表示定理的启…

访问网络附加存储:nfs

文章目录 访问网络附加存储一、网络附加存储1.1、存储类型1.3、通过NFS挂载NAS1.4、NFS挂载过程服务端客户端 二、实验&#xff1a;搭建NFS服务端及挂载到nfs客户端服务端客户端测试命令合集服务端客户端 访问网络附加存储 一、网络附加存储 1.1、存储类型 DAS&#xff1a;Di…

mysql的数据结构及索引使用情形

先来说下数据的一般存储方式&#xff1a;内存(适合小数据量)、磁盘(大数据量)。 磁盘的运转方式&#xff1a;速度 旋转&#xff0c;磁盘页的概念&#xff1a;每一页大概16KB。 1、存储结构 哈希 是通过hash函数计算出一个hash值的&#xff0c;哈希的优点就是查找的时间复杂度…

图片编辑工具-Gimp

一、前言 GIMP&#xff08;GNU Image Manipulation Program&#xff09;是一款免费开源的图像编辑软件&#xff0c;具有功能强大和跨平台的特性。 GIMP作为一个图像编辑器&#xff0c;它提供了广泛的图像处理功能&#xff0c;包括但不限于照片修饰、图像合成以及创建艺术作品…