AI论文速读 |2024[IJCAI]TrajCL: 稳健轨迹表示:通过因果学习隔离环境混杂因素

题目: Towards Robust Trajectory Representations: Isolating Environmental Confounders with Causal Learning

作者:Kang Luo, Yuanshao Zhu, Wei Chen, Kun Wang(王琨), Zhengyang Zhou(周正阳), Sijie Ruan(阮思捷), Yuxuan Liang(梁宇轩)

机构:香港科技大学(广州),中国科学技术大学,北京理工大学
arXiv网址https://arxiv.org/abs/2404.14073

Cool Paperhttps://papers.cool/arxiv/2404.14073

关键词:轨迹表示,因果学习,环境混杂因素,稳健性,泛化能力

TL; DR: 本文提出了一个基于因果学习的轨迹建模框架TrajCL,通过构建结构因果模型来分析轨迹数据、环境因素和轨迹表示之间的相互作用,并设计了环境对齐模块和因果学习模块来隔离地理空间环境因素的混杂效应,从而提高轨迹表示的稳健性和泛化能力。

robust和robustness,在这里我都翻译为稳健性。

TrajCL同名的还有一篇发表在ICDE23的轨迹相似度检测的文章:Contrastive Trajectory Similarity Learning with Dual-Feature Attention
TrajCL

(那里的CL指的是对比学习(Contrastive Learning))

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

摘要

轨迹建模是指描述人类运动行为的特征,是理解移动模式的关键一步。 然而,现有的研究通常忽略地理空间背景的混杂影响,导致获得虚假的相关性和有限的泛化能力。 为了弥补这一差距,本文首先制定了结构因果模型(Structural Causal Model,SCM),从因果角度解读轨迹表示学习过程。 在 SCM 的基础上,进一步提出了一种基于因果学习的轨迹建模框架(TrajCL),该框架利用后门调整理论作为干预工具来消除地理空间上下文和轨迹之间的虚假相关性。 对两个真实世界数据集的大量实验验证了 TrajCL 显着增强了轨迹分类任务的性能,同时展示了卓越的泛化性和可解释性。

地理上下文对轨迹建模的影响

Q: 这篇论文试图解决什么问题?

A: 这篇论文试图解决的问题是如何在轨迹建模中消除地理空间环境因素带来的混杂效应,以提高轨迹表示的稳健性和泛化能力。具体来说,论文的主要贡献和解决的问题可以总结如下:

  1. 轨迹表示学习的因果视角:论文提出了一个结构因果模型(Structural Causal Model, SCM),从因果关系的角度分析轨迹表示学习过程中的变量关系,包括轨迹数据、环境因素以及轨迹表示之间的相互作用。
  2. 混杂因素的识别与隔离:论文指出,地理空间环境因素(如交通灯、道路类型等)可能会引入混杂效应,导致模型学习到的轨迹表示与实际的移动模式之间的关联性不具有因果性,而是由于环境因素的干扰产生的。
  3. 因果学习框架(TrajCL):为了解决上述问题,论文提出了一个基于因果学习的轨迹建模框架TrajCL,该框架利用后门调整理论(backdoor adjustment theory)作为干预工具,通过设计环境对齐模块和因果学习模块,来消除地理空间环境因素与轨迹之间的混杂关联。
  4. 实验验证:通过在两个真实世界的轨迹数据集上的广泛实验,论文验证了TrajCL在轨迹分类任务中的性能提升,展示了其在少数样本学习或不平衡样本学习场景下的优越泛化能力和可解释性。

总的来说,这篇论文的目标是通过因果学习方法,提高轨迹数据建模的稳健性和泛化能力,使其能够更好地理解和预测人类移动模式。

Q: 有哪些相关研究?

A: 论文中提到的相关研究主要分为两个领域:轨迹建模和因果推断。以下是一些关键的相关研究:

  1. 轨迹建模
    • 早期的基于启发式的方法,如使用空间网格方法来探索轨迹子结构的空间特性。
    • 利用局部和全局特征进行旅行模式分类的研究。
    • 将语义信息(如道路网络)融入轨迹分类的研究。
    • 利用深度学习模型,如循环神经网络(RNN)和变换器(Transformer)来捕捉轨迹的高阶运动模式。
  2. 因果推断
    • 传统因果推断研究,关注如何在不同分布下学习因果模型,并使用因果模型进行干预或反事实推断。
    • 因果表示学习,旨在结合深度学习和因果推断,广泛应用于计算机视觉、推荐系统、图数据挖掘等领域。
  3. 具体研究工作
    • [Lee and Han, 2008] 提出了一种基于空间网格的方法,用于轨迹分类。
    • [Zheng et al., 2008] 和 [Dodge et al., 2009] 提取了子网格和轨迹点的局部和全局特征。
    • [Xiao et al., 2017] 结合了语义信息,如道路网络,以分类车辆轨迹。
    • [Liu and Lee, 2017] 和 [Jiang et al., 2017] 使用了两种常见的RNN架构来捕捉高阶运动模式。
    • [Liu et al., 2019] 和 [Liang et al., 2021] 引入了段卷积加权机制和神经微分方程。
    • [Han et al., 2021] 和 [Yao et al., 2022] 通过图神经网络集成了道路网络的空间特征。
    • [Liang et al., 2022] 采用了先进的变换器架构来平衡轨迹建模的速度和准确性。
  4. 因果推断在其他领域的应用
    • [Li et al., 2023] 从因果角度研究了时间序列的分布变化。
    • [Deng et al., 2023] 构建了因果图来描述交通预测,并分析了时空特征与结果之间的因果关系。
    • [Xia et al., 2023] 应用因果推断来减轻时空图预测中的混杂效应。

这些研究表明,轨迹建模和因果推断是两个活跃的研究领域,并且在轨迹数据的分析和理解中具有重要的应用潜力。论文提出的TrajCL框架结合了这两个领域的技术,以提高轨迹表示的稳健性和泛化能力。

Q: 论文如何解决这个问题?

结构因果模型SCM

A: 论文通过提出一个名为TrajCL的因果学习框架来解决轨迹表示中的混杂效应问题。具体来说,TrajCL框架包括以下几个关键步骤:

  1. 结构因果模型(SCM):首先,论文建立了一个SCM来分析轨迹数据、环境因素和轨迹表示之间的因果关系。SCM帮助识别了环境因素作为混杂因子,可能在轨迹数据和轨迹表示之间引入的后门路径。
  2. 环境对齐模块:设计了一个环境对齐模块,该模块使用地理空间上下文来指导编码器分离因果和混杂表示。这个模块包括一个交叉注意力组件和一个分离分配组件,用于学习混杂感知和因果感知的软掩码。
  3. 因果学习模块:通过设计不同的策略来实现后门调整,包括分离学习策略、干预学习策略和最终的优化过程。分离学习策略使用多层感知器(MLP)对两个分支的特征进行分类,以区分因果特征和混杂特征。干预学习策略通过层次化操作混杂特征并将其与因果特征随机组合,以实现后门调整。
  4. 后门调整:利用后门调整理论,通过估计P(H|do(X))来阻断后门路径,其中do(·)表示do-calculus。这涉及到对环境因素进行干预,以消除其对轨迹表示的混杂影响。
  5. 实验验证:在两个真实世界的轨迹数据集上进行广泛的实验,验证了TrajCL在轨迹分类任务中的性能提升,并展示了其在少数样本学习和不平衡样本学习场景下的优越泛化能力和可解释性。

通过这些步骤,TrajCL能够有效地从人类轨迹中提取出稳健和领域不变的表示,同时减少对特定环境条件的过拟合风险。

TrajCL

Q: 论文做了哪些实验?

旅行模式分类

少样本

A: 论文中进行了多项实验来验证TrajCL框架的性能和稳健性。以下是实验的主要部分:

  1. 实验设置
    • 使用了两个公开的真实世界轨迹数据集:GeoLife和GrabPosisi。
    • 对轨迹数据进行了预处理,包括将原始轨迹分割成较短的子轨迹实例,并提取了地理空间上下文特征。
  2. 基线模型
    • 选择了五个代表性的基线模型,包括GRU、BiLSTM、GRU-D、STGN和TrajFormer,这些模型都是轨迹建模领域的常见模型。
  3. 性能比较
    • 在不同的模型设置下,比较了原始基线模型、加入环境信息后的模型以及应用了TrajCL框架后的模型的性能。
  4. 稳健性测试
    • 少数样本学习:将原始数据集划分为不同大小的子集,以模拟少数样本学习场景,并在不同模型上实施TrajCL。
    • 不平衡样本学习:通过调整训练集中类别比例,保持测试/验证集不变,以测试模型在不平衡样本条件下的性能。
  5. 消融研究
    • 通过移除TrajCL框架中的各个组件,来量化每个组件对整体性能的贡献。
  6. 解释性分析
    • 对环境对齐模块学习到的环境原型进行了可视化分析,以展示模型对不同地理空间上下文的感知能力。
  7. 超参数影响
    • 研究了环境代码簿大小和隐藏维度对模型性能的影响。
  8. 更多结果
    • 提供了在其他基线模型上实现TrajCL时在不平衡样本学习场景下的性能结果。

这些实验全面地评估了TrajCL框架在轨迹分类任务上的性能,特别是在面对环境混杂因素时的稳健性和泛化能力。实验结果表明,TrajCL能够有效地提高轨迹表示的稳健性,并且在多种不同的环境条件下都能取得良好的性能。

不平衡样本学习场景的探索

超参

Q: 总结一下论文的主要内容

A: 这篇论文的主要内容可以总结如下:

  1. 问题定义:论文针对的是轨迹建模中的一个关键问题,即如何从人类移动性数据中提取有用、泛化和简洁的轨迹表示,同时消除地理空间环境因素带来的混杂效应。
  2. 因果视角:通过构建结构因果模型(SCM),论文从因果关系的角度分析了轨迹表示学习过程中的变量关系,包括轨迹数据、环境因素和轨迹表示之间的相互作用。
  3. TrajCL框架:提出了一个基于因果学习的轨迹建模框架TrajCL,该框架利用后门调整理论作为干预工具,通过设计环境对齐模块和因果学习模块,来消除地理空间环境因素与轨迹之间的混杂关联。
  4. 环境对齐模块:该模块使用地理空间上下文来指导编码器分离因果和混杂表示,包括交叉注意力组件和分离分配组件。
  5. 因果学习模块:实施了多种策略来实现后门调整,包括分离学习策略、干预学习策略和最终的优化过程。
  6. 实验验证:在两个真实世界的轨迹数据集上进行了广泛的实验,验证了TrajCL在轨迹分类任务中的性能提升,并展示了其在少数样本学习和不平衡样本学习场景下的优越泛化能力和可解释性。
  7. 主要贡献:提出了一个新颖的因果视角来增强轨迹表示的稳健性,并通过实验验证了该框架的有效性。
  8. 未来工作:论文最后提出了一些未来工作的方向,包括扩展TrajCL的适用性以覆盖更多样化的环境,以及将其应用于更多现实的基于轨迹的任务,如旅行时间估计。

**:提出了一个新颖的因果视角来增强轨迹表示的稳健性,并通过实验验证了该框架的有效性。
8. 未来工作:论文最后提出了一些未来工作的方向,包括扩展TrajCL的适用性以覆盖更多样化的环境,以及将其应用于更多现实的基于轨迹的任务,如旅行时间估计。

总体而言,这篇论文通过引入因果学习的方法,为处理轨迹数据中的混杂效应提供了一种新的解决方案,并在理论和实践上都取得了积极的成果。

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3015469.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

leetcode-字符串的排列-100

题目要求 思路 1.因为只涉及到字符,因此可以进行排序 2.创建临时字符串,当临时字符串temp的长度等于str的长度,作为判出条件。 3.创建一个标记的数组,每次在temp中插入一个字符,便在对应的数组下标设置为1&#xff0c…

国家电网某地电力公司网络硬件综合监控运维项目

国家电网某地电力公司是国家电网有限公司的子公司,负责当地电网规划、建设、运营和供电服务,下属多家地市供电企业和检修公司、信息通信公司等业务支撑实施机构。 项目现状 随着公司信息化建设加速,其信息内网中存在大量物理服务器、存储设备…

美团KV存储squirrel和Celler学习

文章目录 美团在KV存储squirrel优化和改进在水平方向1、对Gossip协议进行优化 在垂直扩展方面1、forkless RDB数据复制优化2、使用多线程,充分利用机器的多核能力 在高可用方面 美团持久化kv存储celler优化和改进水平扩展优化1、使用bulkload进行数据导入2、线程模型…

linux启动常见问题

一、忘记root密码 日常生活中,我们会接触到很多账号和密码,而这些账号和密码我们不能都很好的记忆,对于linux也是一样的,如果root密码忘记了怎么办?岂不是都无法登陆使用Linux了?现在我就教各位&#xff0c…

一文了解CRM系统帮助中心:从认识到搭建

客户关系管理(CRM)系统是企业的一个重要部分。而CRM系统帮助中心为用户提供了便捷的支持服务,提升了用户体验,减少了企业运营成本。本文将从认识到搭建,带你全面了解CRM系统帮助中心。 一、认识CRM系统帮助中心 CRM系统…

智慧交通系统:未来出行,从这里开始

随着城市化进程的加快,交通拥堵、事故频发、停车难等问题日益凸显,传统交通管理模式已难以满足现代社会的需求。智慧交通系统作为解决这些问题的关键,通过集成创新技术,实现交通管理的智能化、信息化,提高交通系统的运…

流量分析利器arkime的学习之路(三)---结合Suricata攻击检测

1、基础 Arkime安装部分参考《流量分析利器arkime的学习之路(一)—安装部署》 在此基础上安装suricata软件并配置。 2、安装suricata yum install suricate 可能依赖的文件包括libyaml,PyYAML,这些可能在之前安装arkime或者其他…

教程分享:如何为跨境电商、外贸、国际展会制作二维码?

不论是做跨境电商、在全球做产品推广,还是国外的餐厅运营、参加国际展会,或者是做创意户外广告、制作个性化的个人名片、有趣的产品包装……只要是在国外使用二维码,你都可以在QR Tiger去制作您需要的二维码! 一、认识QR Tiger 二…

RVM(相关向量机)、CNN_RVM(卷积神经网络结合相关向量机)、RVM-Adaboost(相关向量机结合Adaboost)

当我们谈到RVM(Relevance Vector Machine,相关向量机)、CNN_RVM(卷积神经网络结合相关向量机)以及RVM-Adaboost(相关向量机结合AdaBoost算法)时,每种模型都有其独特的原理和结构。以…

[开发|鸿蒙] 鸿蒙OS开发环境搭建(笔记,持续更新)

搭建开发环境流程: https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V2/installation_process-0000001071425528-V2 鸿蒙DevEco Studio 3.1.1 Release仅支持windows和mac系统 运行环境要求 为保证DevEco Studio正常运行,建议电脑配置…

idea修改maven项目名称及子模块名称

一、修改目录名称 shift F6修改目录,选择“rename module and dictionary”。![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/43efd9c6af6e43ad9656455db94b37a2.png)二、修改子项目pom的 三、修改父项目pom的 四、刷新maven项目

消费金融平台公司如何做大做强自营产品

本文来自于2019年的某次内部分享沟通会,部分敏感内容已做删减。

Facebook之道:探索社交媒体领域的未来

随着科技的不断发展,社交媒体已经成为我们日常生活中不可或缺的一部分。而在这个领域中,Facebook一直是引领者和领头羊。然而,随着时间的推移,社交媒体领域正在发生着翻天覆地的变化,而Facebook又将何去何从&#xff1…

Meta的Ray-Bans将是最好的AI伴侣眼镜

早在2023年,当我第一次尝试雷朋眼镜时,我就带着智能眼镜自拍。但那个时候,很少有人意识到它是一副智能眼镜。 现在2024年雷明这种眼镜兼作蓝牙耳机,与iOS或安卓系统配对,并与一个专门的元视图应用程序同步。眼镜臂底部…

Scanner中next()、nextInt()、nextLine()、hasNext()、hasNextInt()的使用方法及注意事项

目录 1、next()、nextInt()、nextLine()的使用方法及区分 2、循环时如何使用hasNext方法 3、用hasNextInt()作为判断下一个输入是否为数字需要配合next()方法使用 1、next()、nextInt()、nextLine()的使用方法及区分 三者简单定义 next():此方法遇见第一个有效字符…

厂家自定义 Android Ant编译流程源码分析

0、Ant安装 Windows下安装Ant: ant 官网可下载 http://ant.apache.org ant 环境配置: 解压ant的包到本地目录。 在环境变量中设置ANT_HOME,值为你的安装目录。 把ANT_HOME/bin加到你系统环境的path。 Ubuntu下安装Ant: sudo apt…

期权买方要保证金吗?期权交易保证金怎么计算?

今天期权懂带你了解期权买方要保证金吗?期权交易保证金怎么计算?期权保证金其实就是你在购买期权合约时,作为卖方要付出的那一小笔钱。简单说,就是为了防止你违约,给交易双方一个保障的“小押金”。 期权买方要保证金吗…

Python:实现b站登录并保存登录信息(baidu Comate插件帮助我逐行分析代码)

📚博客主页:knighthood2001 ✨公众号:认知up吧 (目前正在带领大家一起提升认知,感兴趣可以来围观一下) 🎃知识星球:【认知up吧|成长|副业】介绍 ❤️感谢大家点赞👍&…

消费增值:让每一分钱都增值的新时代消费模式

是否曾思考过,在每次购物或服务消费时,你支付的款项究竟流向了何方?如今,我想向你揭示一种颠覆性的消费理念——消费增值。它不仅仅满足你的日常消费需求,更能让你的资金在消费的同时实现增值,为你打开全新…

layui 数据表格 新增一行

第一件事 先把 闲心大佬的官网 贴上 &#xff1a;layui 官网 layui 数据表格中 新增一行 官网拉下来的一个 大体结构就这样 <!DOCTYPE html> <html> <head><meta charset"utf-8"><meta name"viewport" content"width…