利用生成式AI重新构想ITSM的未来

对注入 AI 的生成式 ITSM 的需求,在 2023 年 Gartner® AI 炒作周期中,生成式 AI 达到预期值达到顶峰后,三分之二的企业已经将生成式 AI 集成到其流程中。

SLA

你问为什么这种追求?在预定义算法的驱动下,IT 服务交付和管理中的现有 AI 应用程序仅限于提供预测或分类。另一方面,生成式 AI 可以通过动态创建内容(无论是文本、图像还是视频)来提供上下文对话体验,从而提供无可挑剔的服务体验。因此,让我们探讨企业如何在 ITSM 中利用这些功能。

利用LLM 解决L1事件
目前大多数IT服务台团队部署的聊天机器人功能有限,而且大多无法完全理解用户问题,更不用说帮助解决这些问题了。但是,随着 LLM 等生成式 AI 技术的应用,IT 服务台团队可能很快能够将他们的技术人员完全从处理 L1 事件中解放出来,同时也不会影响响应和解决方案的质量和相关性。随着多模态 LLM 的出现,此类虚拟代理将能够通过屏幕截图和屏幕录像收集详细信息,以更好地诊断用户问题。

检索增强生成 (RAG) 等技术的最新进展还可以使这些虚拟代理通过参考特定于该组织的信息和知识以及 LLM 的大量训练数据来提供准确且相关的解决方案。

通过智能升级和通信重新定义 SLA
生成式 AI 不仅可以解决基本的 L1 事件,还可以在处理复杂场景方面发挥作用,无论是影响关键业务资源的高优先级事件,还是确保多个用户按时加入。生成式 AI 无需等待 SLA 变为红色,而是可以分析历史趋势、业务重要性和用户情绪。然后,它可以巧妙地将可能违反 SLA 的工单提前上报给专家,确保及时解决。

此外,在此过程中,生成式人工智能可以生成按需通信,让利益相关者了解上下文更新,而不仅仅是在整个工单旅程中的样板通知。

在处理工单时丰富用户体验
IT 服务台团队必须提供卓越的用户体验,同时提高员工的工作效率。生成式 AI 可以嵌入到各种用户接触点中,以实现这两个目标。LLM 支持的虚拟 IT 服务台代理可以理解用户的意图、情绪,并动态地对用户问题做出个性化响应,从而更好、更快地帮助他们,而不是现有虚拟代理提供的僵化和静态响应。

此外,工单表单可能会被最终用户和此类虚拟代理之间的对话所取代,以收集相关信息,就像在简短的问答中一样,而不会使用户因过时的表单而超载。

此外,最终用户的事件解决可以变得更加主动,而不仅仅是等待用户向 IT 服务台报告问题。通过自然语言案例提取,生成式 AI 可以从内网论坛或内部协作平台中获取用户的不满,并将其转换为工单,以便更快地解决问题。

通过战略洞察促进无风险变更管理
企业需要处理多个变更,包括服务器升级和防火墙调整,这就需要 IT 变更经理快速对变更队列进行分类并防止冲突。但是,在多个更改记录中搜索受影响的配置项目 (CI)、服务或重叠计划可能很乏味且容易出错。

生成式 AI 为 IT 变更经理和所有者提供战略洞察力,无需跳转选项卡即可快速总结变更情况。这些可能表明 CI 中的潜在重叠、推出和应急计划中的漏洞、角色和职责划分不当、变更之间的冲突等等。

此外,为了避免变更失败,IT 团队必须通过超越数字来评估变更带来的风险。除了预测和分配风险外,生成式人工智能还可以提供建议,突出可能经历停机的潜在服务、可能受到影响的关键资源、业务影响,以及最终将这些风险降至最低的方法。

轻松管理端点异常和合规性
通过智能地从众多来源(包括端点、已安装的应用程序和活动日志)中提取信息,生成式 AI 可以通过自动分析可能影响用户生产力的缓慢或应用程序崩溃等问题来帮助 IT 团队。它可以帮助提供可操作的建议,例如向用户建议 RAM 更新、硬件更换或软件更新。

此外,生成式人工智能可以通过有效的案例总结来简化合规管理等繁重的活动。生成式 AI 无需手动筛选与不同产品或供应商相关的大量采购订单、合同和许可证,而是可以一目了然地总结它们,从而提前智能地提醒 IT 团队有关许可证续订等关键要求。

培养动态和相关的知识库
从手头有过时或不相关的解决方案到在 ITSM 平台之外发现相关答案,用户访问正确的解决方案来自我解决问题可能很费力。

相反,生成式人工智能提供了一种方便的方法来克服这一挑战。当最终用户向服务台报告问题时,生成式 AI 可以从 YouTube 和外部论坛等公共来源扫描合适的解决方案或 DIY 方法。此外,随着 RAG 等技术的进步,生成式 AI 可以将其信息建立在内部 IT 文档上,从而改善上下文。有了这个,它可以通过逐步指导最终用户来提供相关的解决方案,从而简化知识发现。

此外,通过考虑来自外部和内部来源的解决方案,包括有机对话、工作日志、历史记录、文档、决议和协作支持中心,生成式 AI 可以用最新信息填充知识库,以缩小知识差距。

利用生成式 AI 实现服务体验现代化
从解决事件到管理资产和更新知识库,这些是生成式 AI 在不久的将来帮助 IT 团队重新构想服务体验的一些不同方式。现在是企业利用生成式人工智能转型能力的时候了,因为它有可能在未来几年成为 ITSM 智能自动化的支柱。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3015350.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

如何把一个PDF文档每两页合并为一页?跟我学,5秒搞定!

想要将两张PDF的内容合并到一张A4纸上显示。 这需要用到PDF编辑软件,在迅捷PDF编辑器中的“打印”功能里进行设置。 下面给大家演示一下具体怎么操作: 01.打开迅捷PDF编辑器,导入PDF文件,找到左上角【打印】功能。 02.在弹出…

服务器2080ti驱动的卸载与安装

服务器2080ti驱动的卸载与安装 前言1、下载驱动2、驱动卸载与安装2.1 卸载原来驱动2.2 安装新驱动 3、查看安装情况 前言 安装transformers库,运行bert模型时出错,显示torch版本太低,要2.0以上的,所以更新显卡驱动,重…

黑马点评项目总结

登录 基于session登录 短信验证码登录 配置登录拦截器 向 Spring MVC 框架中添加拦截器,LoginInterceptor 是一个自定义的拦截器,用于拦截用户的登录请求。 excludePathPatterns这一句是设置拦截器需要放行的请求路径列表。 "/user/code", …

Java | Leetcode Java题解之第67题二进制求和

题目&#xff1a; 题解&#xff1a; class Solution {public String addBinary(String a, String b) {StringBuffer ans new StringBuffer();int n Math.max(a.length(), b.length()), carry 0;for (int i 0; i < n; i) {carry i < a.length() ? (a.charAt(a.leng…

基于云制造的智能工厂简单介绍

基于云制造的智能工厂是利用云制造服务平台&#xff0c;以制造资源层、现场控制层、车间执行层、企业管理层、平台应用层、企业协同的业务需求和集成协作为牵引&#xff0c;综合基于云制造服务平台的应用模式&#xff0c;同时考虑智能工厂整体安全&#xff0c;构建基于云制造的…

Gradio之blocks灵活搭建页面

这里写目录标题 搭建一个UI界面搭建上半部分的框架比例调节以及其他效果搭建下半部分左边部分搭建下半部分右边部分拓展-CSS的应用 使用标签搭建第二个页面示例 补充AccordionGroup() 搭建一个UI界面 搭建上半部分的框架 如下图&#xff0c;我们想要基本还原下图右边的UI界面…

【优选算法】——Leetcode——202—— 快乐数

目录 1.题目 2. 题⽬分析: 3.简单证明&#xff1a; 4. 解法&#xff08;快慢指针&#xff09;&#xff1a; 算法思路&#xff1a; 补充知识&#xff1a;如何求⼀个数n每个位置上的数字的平⽅和。 总结概括 5.代码实现 1.C语言 2.C 1.题目 202. 快乐数 编写一个算法来…

论文复现和点评《基于随机森林模型的个人信用风险评估研究》

作者Toby&#xff0c;来源公众号&#xff1a;Python风控模型&#xff0c;论文复现和点评《基于随机森林模型的个人信用风险评估研究》 最近Toby老师看到一篇论文热度比较高&#xff0c;下载量有665次&#xff0c;论文标题是《基于随机森林模型的 个人信用风险评估研究》 论文篇…

陪诊系统|陪诊小程序成品|陪诊系统功能

随着人们对健康的日益关注以及医疗技术的不断进步&#xff0c;陪诊小程序应运而生&#xff0c;通过提供陪同就医、医疗服务和健康管理等功能为患者和家庭成员提供了更多的便利和选择。本文将分析陪诊小程序的关键功能&#xff0c;以便更好地理解其在医疗领域的作用。 在陪诊小程…

练习项目后端代码解析注解篇(annotation)

前言 本来想从接口处入手的&#xff0c;但是一下看到接口里几十个方法&#xff0c;眼睛有点抗拒&#xff0c;想想还是先看作者写的自定义注解吧。 项目里有三个自定义注解&#xff1a; 分别是AccessLimit注解、OperationLogger注解、VisitLogger注解 AccessLimit注解 这是一…

Summer ‘24来啦!15个最热门的功能抢先看!

Salesforce Summer 24即将发布&#xff01;本篇文章我们将深入了解Summer 24最热门的声明性功能。 01 自动化Lightning应用程序 新的自动化Lightning应用程序中包含所有与自动化相关的内容。访问该应用程序的用户可以在主应用程序中看到Flow、错误信息和其他基于社区的链接。…

自动驾驶主流芯片及平台架构(一)

零部件成本下降、中低端车竞争加剧&#xff0c;推动ADAS渗透率在中国市场快速提升&#xff0c;自主品牌ADAS装配量大幅提升 零部件成本下降、中低端车竞争加剧&#xff0c;推动ADAS渗透率在中国市场快速提升&#xff0c;自主品牌ADAS装配量大幅提升。5年前在一些高端车型上才有…

【JVM】类加载机制及双亲委派模型

目录 一、类加载过程 1. 加载 2. 连接 a. 验证 b. 准备 c. 解析 3. 初始化 二、双亲委派模型 类加载器 双亲委派模型的工作过程 双亲委派模型的优点 一、类加载过程 JVM的类加载机制是JVM在运行时&#xff0c;将 .class 文件加载到内存中并转换为Java类的过程。它…

【硬核科普】一文读懂生成对抗网络GAN

0. 前言 按照国际惯例&#xff0c;首先声明&#xff1a;本文只是我自己学习的理解&#xff0c;虽然参考了他人的宝贵见解及成果&#xff0c;但是内容可能存在不准确的地方。如果发现文中错误&#xff0c;希望批评指正&#xff0c;共同进步。 本文基于Ian在2014年发表在NIPS的论…

GDPU 天码行空11

&#xff08;一&#xff09;实验目的 1、掌握JAVA中IO中各种类及其构造方法&#xff1b; 2、重点掌握IO中类所具有的IO操作方法&#xff1b; 3、熟悉软件中登录模块的开发方法&#xff1b; 4、掌握IO中读写常用方法。 5、进一步熟悉正则规则的使用方法。 &#xff08;二&…

GT资源-Clock资源

一、Transmitter 时钟分布 XCLK&#xff1a;在使用TX buffer的模式下&#xff0c;XCLK来源于TXOUTCLK。在使用TX bypassing的模式下XCLK来源于TXUSERCLK。TXUSRCLK是GTX/GTH中PCS的内部逻辑时钟。TXUSRCLK2是GT Transceiver 用户侧逻辑时钟。 TXUSRCLK与TXUSRCLK2的关系 FPGA …

聚类分析:使用R语言对Iris数据集进行K均值聚类

引言 聚类分析是一种常用的无监督学习技术&#xff0c;旨在将数据集中的样本分成具有相似特征的组。K均值聚类是其中一种常见的方法&#xff0c;它通过将数据点划分为K个簇&#xff0c;并使每个数据点与其所属簇的中心点距离最小化来实现聚类。本文将介绍如何使用R语言执行K均…

奥威-金蝶BI现金流量表模板,可借鉴、可套用

企业现金流一旦出了问题都是大问题&#xff0c;会直接影响到企业的日常运作&#xff0c;甚至直接关系到企业能不能继续存活&#xff0c;因此现金流量表是企业财务分析中重要报表之一&#xff0c;也是企业监控财务监控情况的重要手段之一。那么这么重要的一份现金流量表该怎么做…

羊大师解读,当代年轻人焦虑应对指南

羊大师解读&#xff0c;当代年轻人焦虑应对指南 当代年轻人面临焦虑问题时&#xff0c;羊大师提出以下综合建议&#xff0c;要增强自我认知了解自身的需求和期望&#xff0c;明确自己的价值观和目标。这有助于避免盲目跟风和过度比较&#xff0c;从而减轻不必要的焦虑。 合理规…

Mybatis-Plus大批量插入数据到MySQL

MyBatis-Plus的saveBatch方法 GetMapping("/save1") public void save1() {// 数据准备List<MallOrder> orderList getMallOrderList();// mybatis-pluslong start System.currentTimeMillis();mallOrderService.saveBatch(orderList);System.out.println(&…