华人团队用大模型实现“读心术”:大脑活动直接变文字

NeurIPS收录的一项新研究,让大模型也学会“读心术”了!

通过学习脑电波数据,模型成功地把受试者的脑电图信号翻译成了文本。

而且整个过程不需要大型设备,只要一块特制的“头巾”就能实现。

在这里插入图片描述

这项成果名为DeWave,能在不通过侵入式设备和MRI的情况下解读脑电波并翻译成文本。

由于用了大模型来读脑,因此报道DeWave的iFLScience也管它叫BrainGPT。

在这里插入图片描述

DeWave虽然不是最早实现脑电波解码的技术,但是它第一个做到了非侵入且无需MRI的脑电波-文本转换。

如果能够规模化运用,DeWave将为脑部瘫痪的人群提供交流上的帮助。

那么,DeWave的表现到底怎么样呢?

测评成绩超SOTA

由于DeWave采用非侵入式方法,信号中的噪声更强,解析难度更高,但相比于此前的SOTA方法,DeWave的测试成绩还是有所提高。

研究团队采用了公开的ZuCo数据集,其中包含了一万多个不重复的句子;受试者进行自然阅读的同时,研究团队对他们的脑信号和正在阅读的文本进行记录。脑电波信号采样频率为500Hz,包含128个信道。

如果输入的EEG信息已经按照眼动追踪方式的特征切分好,那么DeWave大概可以准确解读出句子的三分之一;即使不切分也能够成功捕捉一部分的关键词。

研究结果还显示,DeWave对单词的解析准确率高于整句,对动词的准确率高于名词。

在这里插入图片描述

数据方面,研究团队一共让DeWave对29名受试者的脑电图进行了采集和解析。

结果显示,有切分时,DeWave在BLUE-N数据集上成绩比传统方法高出了3-18%,在ROUGE-1数据集上也有最高6.35%的提升。

如果不做切分,DeWave与相同条件的传统方法相比,表现最多提升了120%。

为了评估DeWave的鲁棒性,团队对其进行了跨受试者(Cross-subject)测试。

这轮测试一共有18名受试者,其中一人的脑电波相信被用于训练。

然后,研究团队观察了模型在其他17人上进行测试时的表现,与被用于训练的人差距越小,说明模型的鲁棒性越强。

结果显示,DeWave的分数下降值低于传统模型,显示出了更强的鲁棒性和泛化能力。

在这里插入图片描述

那么,DeWave是如何实现脑电波解码的呢?

用大模型解读脑电波

DeWave的核心是引入了名为“离散码本”的概念。

通过向量化编码器,连续的脑电图信号被拆分为离散形式,分别与词汇进行对齐。

之后,研究团队将离散化的数据送入Transformer编码器,得到上下文语义融合的向量表示。

在这里插入图片描述

将向量化的文本信息作为监督数据,用得到的向量化信号对BART大模型进行训练,就得到了DeWave。

新的信号解析过程也与之相似——先进行离散化和向量化编码,然后用BART对其进行解读,就得到了文本信息。

在这里插入图片描述

同时,为了增强可解码性研究团队还通过正负样本对编码进行调节,使DeWave解析出的语义更接近目标文本词向量。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3015245.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

鸿蒙内核源码分析(时间管理篇) | 谁是内核基本时间单位

时间概念太重要了,在鸿蒙内核又是如何管理和使用时间的呢? 时间管理以系统时钟 g_sysClock 为基础,给应用程序提供所有和时间有关的服务。 用户以秒、毫秒为单位计时.操作系统以Tick为单位计时,这个认识很重要. 每秒的tick大小很大程度上决…

解决 git克隆拉取代码报SSL certificate problem错误

问题:拉取代码时报错,SSL证书问题:证书链中的自签名证书问题 解决:只需要关闭证书验证,执行下面代码即可: git config --global http.sslVerify "false" 再次拉取代码就可以了

STC89C52驱动XPT2046AD转换

目录 简介封装接线(单端)时序以及命令字SPI时序命令字 程序XPT2046.CXPT2046.hmain.c测试 简介 XPT2046是一款4线电阻式触摸屏控制器,采用12位125 kHz采样SAR类型A / D转换器。XPT2046工作电压低至2.2V,支持1.5V至VCC的数字I/O接…

暗区突围服务器连接失败/网络异常/无法连接下载解决方法

暗区突围是一款仿真战场的模拟,首要介绍的自然是游戏中基本都会参与的模式,叫做战术行动,大家参与其中是会作为特遣队员的身份来做任务,面临的是一个全面自给自足的战场环境,这种模式要求玩家在进入暗区之前自行筹备所…

Jmeter 中 CSV 如何参数化测试数据并实现自动断言

当我们使用Jmeter工具进行接口测试,可利用CSV Data Set Config配置元件,对测试数据进行参数化,循环读取csv文档中每一行测试用例数据,来实现接口自动化。此种情况下,很多测试工程师只会人工地查看响应结果来判断用例是…

PC小程序解密及反编译

一、小程序包解密 小程序原始加密包位置C:\Users\administrator\Documents\WeChat Files\Applet\wx234324324324 二、wxappUnpacker反编译 npm install./bingo D:\temp\小程序包解密\wxpack\wx234324324324.wxapkg 三、查看反编译后的文件

阿里云国际服(alibabacloud)介绍、注册、购买教程?

一、什么是阿里云国际版? 阿里云分为国内版和国际版。国内版仅面向中国大陆客户,国际版面向全球客户。 二、国际版与国内版有何异同? 1)异:除了目标客户不同,运营主体不同,所需遵守的法律与政…

精酿啤酒:种类与风格的多样性探索

啤酒,这一古老的酒精饮品,随着时代的发展与技术的进步,已经衍生出了无数种类与风格。其中,精酿啤酒在近年来备受瞩目,以其与众不同的酿造工艺和风味,成为了啤酒爱好者们的新宠。Fendi club 啤酒&#xff0c…

k8s常见问题:如何处理CrashLoopBackOff问题?

CrashLoopBackOff 概述 首先关于CrashLoopBackOff并不是代表一种错误, "CrashLoopBackOff 是 Kubernetes 中的一个状态,表示在一个 Pod 中发生的重启循环:Pod 中的一个容器启动之后发生了问题,然后反复重启。 Kubernetes 会…

Hive3.0新特性:Materialized Views 物化视图

Materialized Views 物化视图 在 Apache Hive 3.0 中引入了物化视图(Materialized Views)的支持,它们是预先计算并缓存了查询结果的数据结构,以提高查询性能和降低延迟。物化视图通过将查询的结果存储在物理表中来实现&#xff0…

武汉星起航:五对一服务体系,助力创业者成功进军跨境电商市场

随着全球化的深入发展和互联网的普及,跨境电商已成为越来越多国内创业者的首选。然而,跨境电商市场的复杂性和多变性使得许多新手创业者望而却步。在这样的背景下,武汉星起航电子商务有限公司以其独特的五对一服务体系,为创业者提…

为什么企业高管更偏爱中外合办硕士?人大女王金融硕士为你解析

在当今全球化的商业环境中,企业高管们对于自身的职业发展和知识更新提出了越来越高的要求。这其中,中外合办硕士项目因其独特的优势,逐渐受到了企业高管的青睐。那么,为什么企业高管更偏爱中外合办硕士呢?下面我们以人…

微软“叛变”了!本月或将推出5000亿新AI模型MAI-1,对抗谷歌和OpenAI | 最新快讯

(图片来源:钛媒体 App 编辑拍摄) 钛媒体 App 5 月 6 日消息,据 The information 报道,美国科技巨头微软公司(Microsoft)将推出一款参数达 5000 亿的全新 AI 模型产品,内部称为 MAI-1…

2024 cleanmymac有没有必要买呢,全反面分析

在使用mac时,小编遇到了运行内存不足、硬盘空间不足的情况。遇到这种情况,我们可以借助经典的电脑深度清理软件——CleanMyMac X,清理不常用的软件和系统垃圾,非常好用!不过,有许多网友发现CleanMyMac X有免…

【PyTorch单点知识】深入理解与应用转置卷积ConvTranspose2d模块

文章目录 0. 前言1. 转置卷积概述2. nn.ConvTranspose2d 模块详解2.1 主要参数2.2 属性与方法 3. 计算过程(重点)3.1 基本过程3.2 调整stride3.3 调整dilation3.4 调整padding3.5 调整output_padding 4. 应用实例5. 总结 0. 前言 按照国际惯例&#xff0…

Amazon Q Business现已正式上市!利用生成式人工智能协助提高员工生产力

在 2023 年度 AWS re:Invent 大会上,我们预览了 Amazon Q Business,这是一款基于生成式人工智能的助手,可以根据企业系统中的数据和信息回答问题、提供摘要、生成内容额安全地完成任务。 借助 Amazon Q Business,您可以部署安全、…

[性能优化工具类] 批量Mesh网格压缩

问题描述: 对于3D游戏工程来说,美术资源的存储几乎占据了绝大多数的空间,而对于一个3d 模型文件,MeshFilter(网格过滤器)负责存储物体的网格 以及贴图。依靠MeshRender(网格渲染器)跟据MeshFilter的信息去…

使用pandas的merge()和join()函数进行数据处理

目录 一、引言 二、pandas的merge()函数 基本用法 实战案例 三、pandas的join()函数 基本用法 实战案例 四、merge()与join()的比较与选择 使用场景: 灵活性: 选择建议: 五、进阶案例与代码 六、总结 一、引言 在数据分析和处理…

stripe支付

使用第一个示例 1、示例中的PRICE_ID需要去Stripe控制台->产品目录创建产品 1、 添加产品 2、点击查看创建的产品详情 4、这个API ID就是demo中的PRICE_ID 注意:需要注意的是,测试模式和生产模式中的 $stripeSecretKey 需要对应上。简而言之就是不能生…

AI实景自动无人直播软件:引领直播行业智能化革命;提升直播效果,无人直播软件助力智能讲解

随着科技的快速发展,AI实景自动无人直播软件正在引领直播行业迈向智能化革命。它通过智能讲解、一键开播和智能回复等功能,为商家提供了更高效、便捷的直播体验。此外,软件还支持手机拍摄真实场景或搭建虚拟场景,使直播画面更好看…