Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之一 简单人脸识别

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之一 简单人脸识别

目录

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之一 简单人脸识别

一、简单介绍

二、简单人脸识别实现原理

三、简单人脸识别案例实现简单步骤

四、注意事项

附录:

一、cv2.data.haarcascades 目录下,一些文件的详细说明


一、简单介绍

Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。Python是一种解释型脚本语言,可以应用于以下领域: Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发、网络爬虫。

这里使用 Python  基于 OpenCV 进行视觉图像处理,......

人脸检测的两个重要概念:哈尔特征分类器(Haar Feature Classifier)和级联分类器(Cascade Classifier)是用于。

哈尔特征分类器

  • 定义:哈尔特征分类器是一种基于哈尔特征的机器学习算法,用于检测图像中的对象或特定区域。

  • 原理:哈尔特征是一种基于图像局部特征的数学描述方法,通过对图像中不同区域像素值的差异进行计算,提取出具有区分度的特征。这些特征可以是边缘、线段、角点等。哈尔特征分类器通过训练过程学习到一组有效的特征模式,用于区分目标和非目标区域。

  • 应用:哈尔特征分类器常用于对象检测任务,如人脸检测、眼睛检测等。在训练过程中,通常需要提供正样本(包含目标的图像)和负样本(不包含目标的图像),让分类器学习区分目标和非目标的特征模式。

级联分类器

  • 定义:级联分类器是一种多级联组成的分类器结构,由多个弱分类器组成,通过级联方式实现目标检测。

  • 原理:级联分类器将多个简单的分类器组合成一个复杂的分类器,每个简单分类器都是一个弱分类器,对目标区域进行初步筛选或过滤。级联分类器通过级联多个弱分类器,每个分类器都负责判断一组特征是否满足条件,通过级联的方式实现高效的目标检测。

  • 应用:级联分类器常用于实时目标检测任务,如人脸检测、车辆检测等。OpenCV 中的 Haar 级联分类器是基于哈尔特征的级联分类器,通过级联多个分类阶段来实现高效的人脸检测。级联分类器的优势在于其高速、高效的检测性能,适用于实时应用场景。

OpenCV 提供了一些已经训练好的级联分类器,这些级联分类器以XML文件的方式保存在以下路径中:

 ...\Python\Lib\site-packages\cv2\data\

路径说明:

  •  “...\Python\”:Python虚拟机的本地目录。
  •  “\Lib\site-packages\”:pip安装扩展包的默认目录。
  •  “\cv2\data\”:OpenCV库的data文件夹。

OpenCV提供了一些经过预训练的人脸检测器模型文件,这些文件通常包含在OpenCV的安装包中。你可以在OpenCV的官方GitHub页面或者OpenCV官方网站的下载页面找到这些模型文件的下载链接。

一般来说,你可以从以下位置获取OpenCV的预训练模型文件:

  1. OpenCV GitHub Release 页面:在 Releases · opencv/opencv · GitHub 找到你需要的版本,然后在下载的压缩包中找到位于 opencv\data 目录下的人脸检测器模型文件。

  2. OpenCV 官方网站下载页面:访问 OpenCV 官方网站 https://opencv.org/releases/ ,下载你需要的版本,并在相应的压缩包中查找人脸检测器模型文件。

请确保下载与你使用的OpenCV版本兼容的模型文件。

1、Github 下载

Releases · opencv/opencv · GitHub

2、Opencv 官网下载

Releases - OpenCV

二、简单人脸识别实现原理

人脸检测是计算机视觉中的一项任务,旨在自动识别图像或视频中的人脸区域。其主要目标是从复杂的图像中准确地定位和识别出人脸,通常通过以下步骤实现:

  1. 特征提取:使用图像处理和特征工程技术,提取图像中可能代表人脸的特征,如边缘、纹理等。

  2. 分类器训练:利用机器学习或深度学习算法,基于提取的特征训练分类器模型。这些模型能够区分人脸和非人脸区域。

  3. 人脸检测:将训练好的分类器应用于图像或视频数据,通过在不同位置、尺度和方向上滑动窗口,并利用分类器识别可能包含人脸的区域,从而完成人脸检测任务。

  4. 人脸定位:对检测到的人脸区域进行定位,通常是用矩形框标注人脸位置。

  5. 后处理:根据实际需求对检测结果进行进一步处理,如去除重叠框、合并相邻框等。

人脸检测在计算机视觉和人工智能领域有着广泛的应用,包括人脸识别、表情分析、人脸跟踪、人脸融合等方面。

人脸检测的实现原理主要基于哈尔特征分类器和级联分类器(Cascade Classifier)的概念。这些分类器基于机器学习算法,通过训练从大量正样本(包含人脸的图像)和负样本(不包含人脸的图像)中学习人脸特征,并能够在新图像中快速准确地检测人脸。

具体方法如下:

  1. 加载分类器模型:首先,需要加载已经训练好的人脸分类器模型。OpenCV提供了训练好的分类器文件,例如haarcascade_frontalface_default.xml,用于人脸检测。

  2. 读取图像:将待检测的图像读取为OpenCV的图像对象。

  3. 转换为灰度图像:由于人脸检测通常不需要颜色信息,因此将图像转换为灰度图像可以加快处理速度。

  4. 人脸检测:利用detectMultiScale函数进行人脸检测。该函数会返回一个矩形列表,每个矩形表示一个检测到的人脸区域的位置和大小。

  5. 绘制人脸框:遍历检测到的人脸区域,利用OpenCV提供的绘制函数在原始图像上绘制矩形框,标注出人脸位置。

  6. 显示结果:将绘制了人脸框的图像显示出来,或者保存到文件中。

人脸检测过程中,涉及了以下几个关键函数:

  • cv2.CascadeClassifier()

    • 功能:加载级联分类器模型。
    • 参数:需要传入训练好的分类器模型的路径。
    • 返回值:返回一个CascadeClassifier对象,用于后续的人脸检测。
  • detectMultiScale()

    • 功能:对图像进行多尺度目标检测。
    • 参数
      • image:待检测的图像。
      • scaleFactor:用于缩放图像大小的比例因子,用于在不同尺度下搜索目标。
      • minNeighbors:指定每个目标至少要被检测到多少次才算是真正的目标。
      • minSize:目标的最小尺寸。
      • flags:检测模式。
      • minSize:目标的最小尺寸。
    • 返回值:返回一个矩形列表,每个矩形表示一个检测到的目标的位置和大小。
  • cv2.rectangle()

    • 功能:在图像上绘制矩形框。
    • 参数
      • image:要绘制矩形框的图像。
      • pt1:矩形左上角的坐标。
      • pt2:矩形右下角的坐标。
      • color:矩形框的颜色。
      • thickness:矩形框的线条粗细。
    • 返回值:无。
  • cv2.putText()

    • 功能:在图像上绘制文本。
    • 参数
      • image:要绘制文本的图像。
      • text:要绘制的文本内容。
      • org:文本左下角的坐标。
      • fontFace:字体类型。
      • fontScale:字体大小的缩放因子。
      • color:文本颜色。
      • thickness:文本线条粗细。
      • lineType:文本线条类型。
    • 返回值:无。

这些函数是实现人脸检测和在图像上标注人脸框的关键函数,通过它们可以完成人脸检测任务并将结果可视化。

三、简单人脸识别案例实现简单步骤

1、编写代码

2、运行效果

3、具体代码

"""
简单人脸识别1、加载分类器模型:首先,需要加载已经训练好的人脸分类器模型。OpenCV提供了训练好的分类器文件,例如haarcascade_frontalface_default.xml,用于人脸检测。2、读取图像:将待检测的图像读取为OpenCV的图像对象。3、转换为灰度图像:由于人脸检测通常不需要颜色信息,因此将图像转换为灰度图像可以加快处理速度。4、人脸检测:利用detectMultiScale函数进行人脸检测。该函数会返回一个矩形列表,每个矩形表示一个检测到的人脸区域的位置和大小。5、绘制人脸框:遍历检测到的人脸区域,利用OpenCV提供的绘制函数在原始图像上绘制矩形框,标注出人脸位置。6、显示结果:将绘制了人脸框的图像显示出来,或者保存到文件中。
"""import os
import cv2def detect_faces(image_path, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)):"""识别图像中的人脸,并绘制人脸轮廓:param image_path:(str)输入图像的文件路径:param scaleFactor:(float)用于图像尺度补偿的比例因子:param minNeighbors:(int)每个候选矩形应该保留的邻近数量:param minSize:(tuple)人脸的最小尺寸。:return: numpy.ndarray 绘制了人脸轮廓的图像数据;int 检测到的人脸数量"""# 检查图像文件路径是否存在if not os.path.isfile(image_path):raise FileNotFoundError("Input image file not found.")# 加载人脸分类器face_cascade = cv2.CascadeClassifier(r'YourPath\opencv-4.8.0\data\haarcascades\haarcascade_frontalface_default.xml')# 读取图像image = cv2.imread(image_path)# 将图像转换为灰度图像gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 检测人脸faces = face_cascade.detectMultiScale(gray_image, scaleFactor=scaleFactor, minNeighbors=minNeighbors,minSize=minSize)# 人脸标签计数num = 0# 绘制人脸轮廓for (x, y, w, h) in faces:num += 1cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 0), 2)cv2.putText(image, f'Face {num}', (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)# 返回带有绘制的人脸轮廓的图像和检测到的人脸数量return image, len(faces)def main():# 调用函数并指定输入图像文件路径input_image_path = 'Images/FourPeopleFace.jpg'detected_image, num_faces = detect_faces(input_image_path)# 显示检测到的人脸数量print("Number of faces detected:", num_faces)# 显示绘制了人脸轮廓的图像cv2.imshow('Detected Faces', detected_image)cv2.waitKey(0)cv2.destroyAllWindows()if __name__ == "__main__":main()

四、注意事项

  1. 分类器选择:选择合适的分类器对于人脸检测的准确性至关重要。OpenCV提供了多个预训练好的分类器,可以根据需要选择合适的分类器。

  2. 参数调优detectMultiScale函数接受一些参数,例如scaleFactorminNeighborsminSize等,这些参数会影响检测结果的准确性和速度。需要根据实际情况进行调优。

  3. 图像预处理:有时候在进行人脸检测之前可能需要对图像进行一些预处理,例如去噪、直方图均衡化等,以提高检测的准确性。

  4. 性能优化:人脸检测是一个计算密集型任务,特别是在大型图像上或者实时视频流中。可以通过降低图像分辨率、使用多线程等方法来提高性能。

  5. 结果处理:在使用检测结果时,需要注意处理可能出现的错误和异常情况,例如检测不到人脸时的处理方式。

综上所述,人脸检测的实现方法基于分类器模型和图像处理技术,通过识别人脸的特征并在图像中标注出人脸位置来实现。在实现过程中需要注意选择合适的分类器、调优参数、进行必要的图像预处理以及处理检测结果。

附录:

一、cv2.data.haarcascades 目录下,一些文件的详细说明

  1. haarcascade_eye.xml

    • 功能:用于检测眼睛的分类器。
    • 文件名:haarcascade_eye.xml
    • 用途:检测图像或视频中的眼睛区域。
  2. haarcascade_eye_tree_eyeglasses.xml

    • 功能:用于检测佩戴眼镜的眼睛的分类器。
    • 文件名:haarcascade_eye_tree_eyeglasses.xml
    • 用途:类似于 haarcascade_eye.xml,但更适用于佩戴眼镜的人群。
  3. haarcascade_frontalface_alt.xml

    • 功能:用于检测正面人脸的分类器。
    • 文件名:haarcascade_frontalface_alt.xml
    • 用途:检测图像或视频中的正面人脸区域。
  4. haarcascade_frontalface_alt2.xml

    • 功能:用于检测正面人脸的分类器,改进版本。
    • 文件名:haarcascade_frontalface_alt2.xml
    • 用途:与 haarcascade_frontalface_alt.xml 类似,但改进了性能和准确性。
  5. haarcascade_frontalface_alt_tree.xml

    • 功能:用于检测正面人脸的分类器,基于 Haar 特征的树形结构。
    • 文件名:haarcascade_frontalface_alt_tree.xml
    • 用途:与 haarcascade_frontalface_alt.xml 类似,但使用了不同的检测算法。
  6. haarcascade_frontalface_default.xml

    • 功能:用于检测正面人脸的分类器,默认版本。
    • 文件名:haarcascade_frontalface_default.xml
    • 用途:与 haarcascade_frontalface_alt.xml 类似,是默认的人脸检测模型。
  7. haarcascade_profileface.xml

    • 功能:用于检测侧面人脸的分类器。
    • 文件名:haarcascade_profileface.xml
    • 用途:检测图像或视频中的侧面人脸区域。

这些 XML 文件包含了在大量正样本(带有目标)和负样本(不带目标)上进行训练后得到的分类器模型。加载这些模型后,可以用于检测图像或视频中的目标区域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2978944.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

C语言—深度剖析函数指针,函数指针数组

我们先来看一段代码 #include <stdio.h> void test() {printf("hehe\n"); } int main() {printf("%p\n", test);printf("%p\n", &test);return 0; }输出的是两个地址&#xff0c;这两个地址是 test 函数的地址。 那我们的函数的地址…

杰理695的UI模式LED灯控制

UI模式LED灯修改每个模式对应的LED灯闪烁修改在ui_normal_status_deal(u8 *status, u8 *power_status, u8 ui_mg_para)

关系型数据库中primary key和foreign key、索引的作用

文章目录 一、关系型数据库中主键(primary key)和外键(foreign key)的概念。二、MySQL索引的作用(索引的优缺点)一、关系型数据库中主键(primary key)和外键(foreign key)的概念。 二、MySQL索引的作用(索引的优缺点) MySQL索引是一种数据结构,它可以提高查询性能…

MATLAB初学者入门(13)—— 遗传算法

遗传算法是一种受自然选择和遗传学启发的搜索启发式算法&#xff0c;用于解决优化和搜索问题。它模拟了自然界中生物的进化过程&#xff0c;包括基因的选择、交叉&#xff08;杂交&#xff09;和变异。 MATLAB 提供了一个方便的工具箱&#xff0c;即全局优化工具箱&#xff0c;…

网卡技术解密:理解网卡背后的原理

✍✍在这个信息爆炸的时代&#xff0c;网卡承载着无数数据的流动&#xff0c;是我们日常生活和工作不可或缺的一部分。但是&#xff0c;您是否曾经好奇过&#xff0c;这些小小的硬件是如何在瞬息万变的网络世界中稳定地发挥作用的呢&#xff1f; 想象一下&#xff0c;每当我们…

计算机缺少msvcp120.dll如何解决,7种详细的修复方法分享

msvcr120.dll文件是微软Visual C运行时库的一部分&#xff0c;版本号为12.0。这个DLL文件包含了许多用于支持在Windows上运行的应用程序的重要函数和组件。它是确保某些程序能够正确执行的关键组成部分&#xff0c;特别是那些使用C编写或依赖于某些Microsoft库的程序。 当用户…

家用充电桩有必要买21KW交流充电桩吗?

随着电动汽车的普及和人们环保出行意识的增强&#xff0c;充电设施的需求日益增长。在选择充电桩时&#xff0c;很多人会考虑到充电速度、功率等因素。而作为交流充电桩中充电效率最高的一种&#xff0c;21KW交流充电桩是否值得购买呢&#xff1f; 从成本角度来看&#xff0c;2…

只需几步,即可享有笔记小程序

本示例是一个简单的外卖查看店铺点菜的外卖微信小程序&#xff0c;小程序后端服务使用了MemFire Cloud&#xff0c;其中使用到的MemFire Cloud功能包括&#xff1a; 其中使用到的MemFire Cloud功能包括&#xff1a; 云数据库&#xff1a;存储外卖微信小程序所有数据表的信息。…

画图的神器及必备的调色和选图工具

大学生研究生论文写作及画图的神器 前言常用的工具集合画图工具配色参考画图神器词云 最后下篇 前言 好久没有更博&#xff0c;来更一下吧。最近刚好被问到平常是用什么来画图的&#xff0c;包括会议论文&#xff0c;各种类型的PPT汇报以及项目报告等等里面的图怎么画好。所以…

YoloV8改进策略:卷积改进|DOConv轻量卷积,即插即用|适用各种场景

摘要 本文使用DOConv卷积&#xff0c;替换YoloV8的常规卷积&#xff0c;轻量高效&#xff0c;即插即用&#xff01;改进方法非常简单。 DO-Conv&#xff08;Depthwise Over-parameterized Convolutional Layer&#xff09;是一种深度过参数化的卷积层&#xff0c;用于提高卷…

用户实践:从 HBase 升级为OceanBase,仟传实现110000 TPS的千亿级KV性能优化

本文作者&#xff1a;仟传网络科技技术专家 刘贵宗 & 肖旺生 一、业务需求及选型背景 仟传网络科技&#xff08;TargetSocial&#xff09;&#xff0c;是国内知名的内容社交平台整合营销服务商&#xff0c;为企业级客户提供高效的KOL&#xff08;关键意见领袖&#xff09;…

互联网大厂ssp面经,数据结构:part1

1. 数组和链表的区别是什么&#xff1f; a. 数组是一种线性数据结构&#xff0c;存储在连续的内存块中&#xff0c;元素可以通过索引直接访问。 b. 链表是由节点组成的数据结构&#xff0c;每个节点包含数据和指向下一个节点的指针。 2. 数组和链表的的优缺点是什么&#xff…

旅游网站制作流程

旅游网站制作流程是一个较复杂的过程&#xff0c;因为它需要结合市场调研、用户需求、内容构建、技术开发等多个方面。在这篇文章中&#xff0c;我将简单介绍一下旅游网站的制作流程&#xff0c;大致分为以下步骤。 第一步&#xff1a;市场调研 在制作旅游网站前&#xff0c;我…

【机器学习】分类与预测算法的评价与优化

以实际案例解析F1值与P-R曲线的应用 一、分类算法与性能评价的重要性二、F1值与P-R曲线的概念与意义三、实例解析&#xff1a;以垃圾邮件检测为例四、代码实现与结果分析五、结论与展望 在数据驱动的时代&#xff0c;机器学习算法以其强大的数据处理和分析能力&#xff0c;成为…

会计凭证替代和验校

会计凭证替代和验校 一、替代 在凭证保存前根据设置条件判断此凭证是否有效&#xff0c;其中可以按抬头、行项目或完全凭证来判断,然后再根据Validation设置的消息类型决定凭证是否允许保存。SAP校验是对在系统输入的数据按照规则设定检验是否正确&#xff0c;可以按抬头、行…

基于springboot实现疫情下图书馆管理系统项目【项目源码+论文说明】

基于springboot实现疫情下图书馆管理系统演示 摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了疫情下图书馆管理系统的开发全过程。通过分析疫情下图书馆管理系统管理的不足&#xff0c;创建了一个计算机管理疫…

快速入门SpringCloudAlibaba实战篇【SpringBoot3.x + JDK17】!

&#x1f680; 作者 &#xff1a;“二当家-小D” &#x1f680; 博主简介&#xff1a;⭐前荔枝FM架构师、阿里资深工程师||曾任职于阿里巴巴担任多个项目负责人&#xff0c;8年开发架构经验&#xff0c;精通java,擅长分布式高并发架构,自动化压力测试&#xff0c;微服务容器化k…

SpringBoot下载Excel模板功能

目录 一、前端只需要填写一个a标签调用一下后端接口即可 二、后端 2.1 准备一个excel模板 &#xff0c;将其复制到resource目录下的templates文件夹下 2.2 接着复制下列代码即可 三、运行效果 一、前端只需要填写一个a标签调用一下后端接口即可 1.1 先代理一下防止跨域 e…

代码随想录学习Day 30

860.柠檬水找零 题目链接 讲解链接 思路&#xff1a;需要找零的情况是顾客支付10元或20元&#xff0c;尤其是支付20元时需要考虑找零的方式&#xff0c;此时可以选择找零3张5元或者一张10元一张5元&#xff0c;按照贪心算法的思路来看&#xff1a; 局部最优&#xff1a;在找…

javaWeb项目-财务管理系统功能介绍

项目关键技术 开发工具&#xff1a;IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7 框架&#xff1a;ssm、Springboot 前端&#xff1a;Vue、ElementUI 关键技术&#xff1a;springboot、SSM、vue、MYSQL、MAVEN 数据库工具&#xff1a;Navicat、SQLyog 1、Springboot框架 …