深度学习故障诊断实战 | 数据预处理之基于滑动窗的数据样本增强

前言

本期给大家分享介绍如何基于滑动窗方法进行数据样本增强

背景

深度学习模型训练需要大量的样本。在故障诊断领域,每个类别大都会达到300个样本。但是在实际公开数据集中,以CWRU数据集为例,每个类别只有24组数据,这明显是不够的。
下图以外圈为例,只有24组数据:
在这里插入图片描述
因此需要想办法扩充样本。目前大多数是通过滑动窗方法来扩充样本。例如1组10s长的数据,我每隔0.1s划分1个数据,就可以得到100个子样本。

滑动窗方法介绍

在这里插入图片描述
为增加样本数量,采用了基于滑动窗方法的数据增强方法。数据增强示意图如上图所示,假设一个一维原始时域信号的总样本点数为 L L L,用长度为 L t L_t Lt 的窗口框住的样本为第 1 个子样本,每生成一个子样本后,窗口向前移动 L s L_s Ls 个样本点数长度并框住第 2 个子样本,依次进行生成 n s n_s ns 个子样本。 L s L_s Ls 其计算公式如下:
L s = ⌊ L − L t n s ⌋ L_{\mathrm{s}}=\left\lfloor\frac{L-L_{\mathrm{t}}}{n_{\mathrm{s}}}\right\rfloor Ls=nsLLt

式中 ⌊ ⌋ \left\lfloor\right\rfloor 是向上取整符号。
窗口长度 L t L_t Lt 选择原则:至少包含1个旋转周期长度,4-5个周期为佳。

代码示例

这里以CWRU"1750_12k_0.021-OuterRace3.mat"数据为例。建议使用jupyter notebook

##========导入包========##
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParamsconfig = {"font.family": 'serif', # 衬线字体"font.size": 14, # 相当于小四大小"font.serif": ['SimSun'], # 宋体"mathtext.fontset": 'stix', # matplotlib渲染数学字体时使用的字体,和Times New Roman差别不大'axes.unicode_minus': False # 处理负号,即-号
}
rcParams.update(config)
##========读取数据========##
def data_read(file_path):""":fun: 读取cwru mat格式数据:param file_path: .mat文件路径  eg: r'D:.../01_示例数据/1750_12k_0.021-OuterRace3.mat':return accl_data: 读取到的加速度数据"""import scipy.io as sciodata = scio.loadmat(file_path)  # 加载mat数据data_key_list = list(data.keys())  # mat文件为字典类型,将key变为list类型accl_key = data_key_list[3]  # mat文件为字典类型,其加速度列在key_list的第4个accl_data = data[accl_key].flatten()  # 获取加速度信号,并展成1维数据accl_data = (accl_data-np.mean(accl_data))/np.std(accl_data) #Z-score标准化数据集return accl_data
##========绘制时域信号图========##
def plt_time_domain(arr, fs=12000, ylabel='Amp(mg)', title='原始数据时域图', img_save_path=None, vline=None, hline=None, xlim=None):""":fun: 绘制时域图模板:param arr: 输入一维数组数据:param fs: 采样频率:param ylabel: y轴标签:param title: 图标题:return: None"""import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文plt.rcParams['axes.unicode_minus'] = False  # 显示负号font = {'family': 'Times New Roman', 'size': '20', 'color': '0.5', 'weight': 'bold'}plt.figure(figsize=(12,4))length = len(arr)t = np.linspace(0, length/fs, length)plt.plot(t, arr, c='g')plt.xlabel('t(s)')plt.ylabel(ylabel)plt.title(title)if vline:plt.vlines(x=vline, ymin=np.min(arr), ymax=np.max(arr), linestyle='--', colors='r')if hline:plt.hlines(y=hline, xmin=np.min(t), xmax=np.max(t), linestyle=':', colors='y')if xlim: # 图片横坐标是否设置xlimplt.xlim(0, xlim)  #===保存图片====#if img_save_path:plt.savefig(img_save_path, dpi=500, bbox_inches = 'tight')plt.show()
##========绘制时域信号图========##
file_path = r'D:/22-学习记录/01_自己学习积累/02_基于滑动窗方法划分数据集/01_示例数据/1750_12k_0.021-OuterRace3.mat'   # cwru数据.mat文件路径
fs = 12000    # 采样率12000Hz
fr = 1750     # 转速1750rpm
num_per_ratation = 60/1750 * fs
accl_data = data_read(file_path)   # 读取加速度数据
plt_time_domain(accl_data)         # 绘制时域图
print('数据点个数为:', len(accl_data))
print('每转1圈包含点数:', num_per_ratation)

输出结果:
在这里插入图片描述

数据点个数为: 122281
每转1圈包含点数: 411.42857142857144
##========通过滑动窗口方法增强样本========##
def data_spilt(data, num_2_generate=20, each_subdata_length=1024):""":Desription:  将数据分割成n个小块。输入数据data采样点数是400000,分成100个子样本数据,每个子样本数据就是4000个数据点:param data:  要输入的数据:param num_2_generate:  要生成的子样本数量:param each_subdata_length: 每个子样本长度:return spilt_datalist: 分割好的数据,类型为2维list"""data = list(data)total_length = len(data)start_num = 0   # 子样本起始值end_num = each_subdata_length  # 子样本终止值step_length = int((total_length - each_subdata_length) / (num_2_generate - 1))  # step_length: 向前移动长度i = 1spilt_datalist = []while i <= num_2_generate:each_data = data[start_num: end_num]each_data = (each_data-np.mean(each_data))/(np.std(each_data)) # 做Z-score归一化spilt_datalist.append(each_data)start_num = 0 + i * step_length;end_num = each_subdata_length + i * step_lengthi = i + 1spilt_data_arr = np.array(spilt_datalist)return spilt_data_arr
spilt_data_arr = data_spilt(data=accl_data, each_subdata_length=1024, num_2_generate=50)
print(spilt_data_arr)
print('划分数据样本的维度为:',spilt_data_arr.shape)
# 输出结果
[[-0.53912541  0.1241063   0.62763801 ... -0.31089743  0.15986003-0.70478437][-0.76625967 -0.90941739 -0.45229575 ... -0.89897241 -0.27165898-0.02220819][-0.95815651 -0.92246646 -1.75344986 ...  1.59903578  0.906053920.08934654]...[-0.99252616 -0.44633003  0.72570346 ... -0.7488478   2.352999450.07193225][ 0.89678044  0.56380553  1.10132216 ... -1.45485483 -0.63490413-0.65809345][-0.40335141 -0.75221082 -0.90351645 ... -3.03949526  0.597549655.42676878]]
划分数据样本的维度为: (50, 1024)

大功告成,1个数据经过滑动窗方法划分得到了50个样本(每个子样本长度1024),那24个数据增大到1200个样本了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2905162.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Golang-Gorm-快速上手

Gorm文档 GORM文档地址 安装依赖 go get -u "gorm.io/driver/mysql"go get -u "gorm.io/gorm"连接数据库 默认连接方式 func main() {// 参考 https://github.com/go-sql-driver/mysql#dsn-data-source-name 获取详情dsn : "user:passtcp(127.0.0…

GEE实践应用|热岛效应(一)地表温度计算

目录 1.学习目标 2.理论介绍 3.从MODIS获得地表温度 4.从Landsat卫星获得地表温度 1.学习目标 ①了解如何使用GEE计算地表温度 2.理论介绍 城市化涉及用建筑物、道路和停车场等建筑结构取代自然景观。这种土地覆盖的改变也改变了土地表面的特性。这些变化的范围从表面反射和…

设计模式-设配器模式

目录 &#x1f38a;1.适配器模式介绍 &#x1f383;2.适配器类型 &#x1f38f;3.接口适配器 &#x1f390;4.类的适配器 &#x1f38e;5.优缺点 1.适配器模式介绍 适配器模式&#xff08;Adapter Pattern&#xff09;是作为两个不兼容的接口之间的桥梁。这种类型的设…

【项目技术介绍篇】若依管理系统功能介绍

作者介绍&#xff1a;本人笔名姑苏老陈&#xff0c;从事JAVA开发工作十多年了&#xff0c;带过大学刚毕业的实习生&#xff0c;也带过技术团队。最近有个朋友的表弟&#xff0c;马上要大学毕业了&#xff0c;想从事JAVA开发工作&#xff0c;但不知道从何处入手。于是&#xff0…

快速上手Spring Cloud 六:容器化与微服务化

快速上手Spring Cloud 一&#xff1a;Spring Cloud 简介 快速上手Spring Cloud 二&#xff1a;核心组件解析 快速上手Spring Cloud 三&#xff1a;API网关深入探索与实战应用 快速上手Spring Cloud 四&#xff1a;微服务治理与安全 快速上手Spring Cloud 五&#xff1a;Spring …

(十)图像的梯度倒数加权平滑

环境&#xff1a;Windows10专业版 IDEA2021.2.3 jdk11.0.1 OpenCV-460.jar 系列文章&#xff1a; &#xff08;一&#xff09;PythonGDAL实现BSQ&#xff0c;BIP&#xff0c;BIL格式的相互转换 &#xff08;二&#xff09;BSQ,BIL,BIP存储格式的相互转换算法 &#xff08;三…

Machine Learning机器学习之统计分析

目录 前言 机器学习之统计分析 统计学的主要目标包括&#xff1a; 统计学核心概念&#xff1a; 统计基础&#xff1a; 训练误差&#xff1a; 常见的损失函数&#xff1a; 正则化和交叉验证 博主介绍&#xff1a;✌专注于前后端、机器学习、人工智能应用领域开发的优质创作者、秉…

每日一题 --- 快乐数[力扣][Go]

快乐数 题目&#xff1a;202. 快乐数 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为&#xff1a; 对于一个正整数&#xff0c;每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1&#xff0c;也可能是 无限循环 但始终变不到…

java电话号码的字母组合(力扣Leetcode17)

电话号码的字母组合 力扣原题链接 问题描述 给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。 示例 示例 1&#xff1a;…

Redis开源协议变更!Garnet:微软开源代替方案?

Garnet&#xff1a;微软开源的高性能替代方案&#xff0c;秉承兼容 RESP 协议的同时&#xff0c;以卓越性能和无缝迁移能力重新定义分布式缓存存储&#xff01; - 精选真开源&#xff0c;释放新价值。 概览 最近&#xff0c;Redis修改了开源协议&#xff0c;从BSD变成了 SSPLv…

虚拟机-从头配置Ubuntu18.04(包括anaconda,cuda,cudnn,pycharm,ros,vscode)

最好先安装anaconda后cuda和cudnn&#xff0c;因为配置环境的时候可能conda会覆盖cuda的路径&#xff08;不确定这种说法对不对&#xff0c;这里只是给大家的建议&#xff09; 准备工作&#xff1a; 1.Ubuntu18.04&#xff0c;x86_64&#xff0c;amd64 虚拟机下载和虚拟机Ubu…

|行业洞察·趋势报告|《2024旅游度假市场简析报告-17页》

报告的主要内容解读&#xff1a; 居民收入提高推动旅游业发展&#xff1a;报告指出&#xff0c;随着人均GDP的提升&#xff0c;居民的消费能力增强&#xff0c;旅游需求从传统的观光游向休闲、度假游转变&#xff0c;国内人均旅游消费持续增加。 政府政策促进旅游市场复苏&…

SlerfTools:简化操作,激发Solana生态创新潜能

在区块链世界的快速演变中,Solana生态系统以其独特的高性能吸引了全球的目光。然而,随着生态系统的蓬勃发展,用户和开发者面临的挑战也日渐增多。正是在这样的背景下,一个名为SlerfTools的新星项目应运而生,它承诺将为Solana带来一场革命性的变革。 项目的诞生 SlerfTools并非…

计算机网络——30SDN控制平面

SDN控制平面 SDN架构 数据平面交换机 快速、简单&#xff0c;商业化交换设备采用硬件实现通用转发功能流表被控制器计算和安装基于南向API&#xff0c;SDN控制器访问基于流的交换机 定义了哪些可以被控制哪些不能 也定义了和控制器的协议 SDN控制器&#xff08;网络OS&#…

CDH集群hive初始化元数据库失败

oracle数据库操作&#xff1a; 报错如下&#xff1a;命令 (Validate Hive Metastore schema (237)) 已失败 截图如下&#xff1a; 后台日志部分摘录&#xff1a; WARNING: Use “yarn jar” to launch YARN applications. SLF4J: Class path contains multiple SLF4J binding…

PHP开发全新29网课交单平台源码修复全开源版本,支持聚合登陆易支付

这是一套最新版本的PHP开发的网课交单平台源代码&#xff0c;已进行全开源修复&#xff0c;支持聚合登录和易支付功能。 项目 地 址 &#xff1a; runruncode.com/php/19721.html 以下是对该套代码的主要更新和修复&#xff1a; 1. 移除了论文编辑功能。 2. 移除了强国接码…

定时器的原理和应用

#include<reg51.h> unsigned char s[]{0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F}; unsigned char count0,num0; void inittimer() {TMOD0x01;//0000 0001TH0(65536-50000)/256; //定时50ms50000us 2562^8 初值向右边移动8位TL0(65536-50000)%256;ET01;//开启定…

星光/宝骏/缤果/长安 车机CarPlay手机操作破解教程V2.0版本(无需笔记本、无需笔记本、无需笔记本)

之前写了个1.0版本&#xff0c;由于太局限&#xff0c;需要用到笔记本才能操作&#xff0c;很多车友反馈不方便。特此出个手机版教程&#xff0c;简单easy&#xff0c;妈妈再也不用担心我搞不定啦 一、准备工作 先卸载车机上的autokit 或者 智能互联 app&#xff0c;这步很关…

Avue-crud表格操作栏不显示修改、删除按钮

2024-03-28 奇了怪了&#xff0c;CSDN自动把我之前的文章设置为VIP了&#xff0c;怪不得有时候搜东西看着看着要收费&#xff0c;现在找东西都不好找&#xff0c;我已经反馈不同意了&#xff0c;看看能不能给我取消吧 今天用Avue的时候发现操作栏的按钮没了&#xff0c;按照文…

win10+cuda11.8+cudnn8.6.0安装

目录 一、NVIDIA 驱动程序下载 二、cuda11.8下载 三、cudnn8.6.0下载 四、确认cuda和cudnn是否安装成功 一、NVIDIA 驱动程序下载 1、查看显卡类型&#xff1a;连续按下CTRLALTDELETE -> 选择任务管理器 -> 性能 -> GPU -> 右上角 2、下载地址&#xff1a;官方…