Python图像处理——计算机视觉中常用的图像预处理

概述

在计算机视觉项目中,使用样本时经常会遇到图像样本不统一的问题,比如图像质量,并非所有的图像都具有相同的质量水平。在开始训练模型或运行算法之前,通常需要对图像进行预处理,以确保获得最佳的结果。图像预处理包括调整大小和裁剪到降噪和归一化的各种技术。涉及的库有OpenCV、Pillow和scikit-image等。

图像预处理

图像预处理是将原始图像数据操作成可用和有意义格式的过程。它允许消除不希望的失真并增强计算机视觉应用所需的特定品质。预处理是准备图像数据输入到机器学习模型之前的重要步骤。

常用的图像预处理:

  1. 调整大小: 将图像调整到统一的大小对机器学习算法的正常运行至关重要。可以使用OpenCV的resize()方法来调整图像大小。

  2. 灰度化: 将彩色图像转换为灰度可以简化图像数据,并减少一些算法的计算需求。cvtColor()方法可以用来将RGB转换为灰度。

  3. 降噪: 可以应用平滑、模糊和过滤技术来去除图像中不希望的噪声。常用的降噪方法包括GaussianBlur()和medianBlur()方法。

  4. 归一化: 将像素的强度值调整到期望的范围通常在0到1之间,这可以提高机器学习模型的性能。scikit-image的Normalize()可以用来进行此操作。

  5. 二值化: 通过阈值处理将灰度图像转换为黑白。OpenCV中的threshold()方法用于二值化图像。

  6. 对比度增强: 可以使用直方图均衡化调整图像的对比度。equalizeHist()方法增强了图像的对比度。

图像加载与转换

处理图像之前,首先是加载图像,然后是把图像转换到需要用的到数据空间,以便它们可以被库处理。这里常用到OpenCV和Pillow。

加载
使用OpenCV加载图像:

import cv2
image = cv2.imread('path/to/image.jpg')

这将把图像加载为NumPy数组。OpenCV加载的图像在BGR颜色空间中,如果需要,可能需要将其转换为RGB。

使用Pillow加载图像:

from PIL import Image
image = Image.open('path/to/image.jpg')

这将加载图像并将其存储为PIL图像对象。Pillow支持的图像格式更加丰富,包括PSD、ICO和WEBP等。

在颜色空间之间转换

如果需要在不同的颜色空间之间转换图像,可以使用OpenCV或Pillow提供的函数能直接转换。例如,将BGR转换为灰度图像:

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

在这里插入图片描述

或者将RGB转换为HSV:

image = image.convert('HSV')

在这里插入图片描述

图像尺寸

调整和裁剪图像尺寸是图像预处理的非常重要第一步。由于图像具有不同的形状和大小,但许多机器学习算法通常需要标准大小的输入。因此,经常需要将图像调整和裁剪到特定的尺寸,如256x256或512X512像素。在Python中,OpenCV或Pillow库提供了图像的调整大小和裁剪方法。

使用OpenCV时,可以使用resize()函数来调整图像的大小。例如:

import cv2
img = cv2.imread('original.jpg')
resized = cv2.resize(img, (512, 512))

这将把图像调整为512x512像素。

要裁剪图像为正方形,可以计算裁剪的中心位置,并使用OpenCV的crop()函数。
例如:

height, width = img.shape[:2]
size = min(height, width)
x = (width - size) // 2
y = (height - size) // 2
cropped = img[y:y+size, x:x+size]

使用Pillow时,可以使用Image.open()resize()函数。
例如:

from PIL import Image
img = Image.open('original.jpg')
resized = img.resize((224, 224))

要裁剪图像,可以使用img.crop()函数。
例如:

width, height = img.size
size = min(width, height)
left = (width - size) // 2
top = (height - size) // 2
right = (width + size) // 2
bottom = (height + size) // 2
cropped = img.crop((left, top, right, bottom))

将图像调整大小和裁剪到标准尺寸是非常重要的,这样可以确保机器学习模型能够高效地处理图像,并提高结果的准确性。因此,花时间来精心调整和裁剪图像将会得到更好的模型性能。

图像归一化

在处理图像数据时,将像素值归一化以保持一致的亮度并提高对比度是很重要的。这使得图像更适合分析,并允许机器学习模型独立于光照条件学习模式。

重新缩放像素值:
最常见的归一化技术是将像素值重新缩放到0到1的范围内。这是通过将所有像素除以最大像素值(通常对于RGB图像为255)来完成的。例如:

import cv2
Img = cv2.imread('image.jpg')
normalized = Img / 255.0

这将把所有像素缩放到0和1之间,0为黑色,1为白色。

直方图均衡化:
另一个有用的技术是直方图均衡化。这通过在整个范围内展开像素强度来改善对比度。可以使用OpenCV进行应用:

eq_img = cv2.equalizeHist(img)

这对于对比度低且像素值集中在狭窄范围内的图像效果很好。

对于某些算法,将像素值归一化到零均值和单位方差是有用的。这可以通过减去均值并缩放到单位方差来完成:

mean, std = cv2.meanStdDev(img)
std_img = (img - mean) / std

这将使图像围绕零居中,标准差为1。

还有一些更复杂的归一化技术,但这三个方法——重新缩放到0-1范围、直方图均衡化和标准化——涵盖了基础知识,并将为的图像数据准备好大多数机器学习应用。确保对你的训练和测试数据应用相同的归一化,以获得最佳结果。

图像滤波

图像滤波的作用是平滑图像、去除噪声、增强图像等。滤波操作可以通过应用各种类型的滤波器来实现,其中包括线性滤波器(如均值滤波、高斯滤波)和非线性滤波器(如中值滤波)等。

高斯模糊:
高斯模糊过滤器减少图像中的细节和噪声。它通过对每个像素及其周围像素应用高斯函数来“模糊”图像。这可以帮助平滑边缘和细节,为边缘检测或其他处理技术做准备。

中值模糊:
中值模糊过滤器适用于从图像中去除盐和胡椒噪声。它的工作原理是用邻近像素的中值替换每个像素。这可以帮助平滑孤立的噪声像素,同时保留边缘。

拉普拉斯滤波器:
拉普拉斯滤波器用于检测图像中的边缘。它通过检测强度变化迅速的区域来工作。输出将是一个突出显示边缘的图像,然后可以用于边缘检测。这有助于识别和提取图像中的特征。

锐化掩蔽:
锐化掩蔽是一种用于锐化细节和增强图像边缘的技术。它的工作原理是从原始图像中减去模糊版本的图像。这放大了边缘和细节,使图像看起来更清晰。锐化掩蔽可以在特征提取或对象检测之前用于锐化细节。

双边滤波器:
双边滤波器在保留边缘的同时平滑图像。它通过考虑像素的空间接近度和颜色相似性来实现这一点。空间上靠近且颜色相似的像素将一起平滑。空间上远离或颜色差异很大的像素不会被平滑。这导致了一个具有锋利边缘的平滑图像。双边滤波器在边缘检测之前的噪声减少中可能有用。

使用分割技术检测和移除背景

检测和移除图像的背景是许多计算机视觉任务中的重要预处理步骤。分割可以将前景主题与背景分离,得到只包含主题的清晰图像。

在Python中,使用OpenCV和scikit-image进行图像分割有几种常见方法:

  1. 阈值化(Thresholding):阈值化是将图像转换为二值图像的方法。通过选择一个阈值,像素值高于阈值的被标记为前景,低于阈值的被标记为背景。你可以使用OpenCV的cv2.threshold()函数应用阈值化。
import cv2# 读取图像
img = cv2.imread('image.jpg', 0)  # 以灰度模式读取图像# 应用阈值化
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)# 显示结果
cv2.imshow('Thresholded Image', thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
  1. 边缘检测(Edge Detection):边缘检测可以找到图像中的边缘,即对象之间的边界。Canny边缘检测是一种流行的算法,你可以使用OpenCV的cv2.Canny()函数来实现。
import cv2# 读取图像
img = cv2.imread('image.jpg', 0)  # 以灰度模式读取图像# Canny边缘检测
edges = cv2.Canny(img, 100, 200)# 显示结果
cv2.imshow('Canny Edge Detection', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
  1. 区域生长(Region Growing):区域生长是一种从种子点开始,逐步将相邻像素添加到区域中的方法。你可以使用scikit-image的skimage.segmentation.region_growing()函数来实现。
from skimage.segmentation import region_growing
import matplotlib.pyplot as plt# 读取图像
img = plt.imread('image.jpg')# 区域生长
seed = (100, 100)
region = region_growing(img, seed)# 显示结果
plt.imshow(region, cmap='gray')
plt.axis('off')
plt.show()
  1. 分水岭算法(Watershed Algorithm):分水岭算法将图像视为地形图,通过模拟水流的流动来分割图像。你可以使用scikit-image的skimage.segmentation.watershed()函数来实现。
from skimage.segmentation import watershed
from skimage.feature import peak_local_max
from scipy import ndimage
import numpy as np
import matplotlib.pyplot as plt# 读取图像
img = plt.imread('image.jpg')# 计算距离变换
distance = ndimage.distance_transform_edt(img)# 寻找峰值
local_maxi = peak_local_max(distance, indices=False, footprint=np.ones((3, 3)), labels=img)# 应用分水岭算法
markers = ndimage.label(local_maxi)[0]
labels = watershed(-distance, markers, mask=img)# 显示结果
plt.imshow(labels, cmap='nipy_spectral')
plt.axis('off')
plt.show()

通过分割,可以从图像中隔离出主题。分割是一个关键的第一步,它允许将计算机视觉模型集中在图像最重要的部分——前景主题上。

数据集增强

数据增强是一种通过生成新的图像来人为扩展数据集大小的技术,有助于减少过拟合并提高模型的泛化能力。常见的图像数据增强包括:

  1. 翻转和旋转:对图像进行水平或垂直翻转,以及90度、180度、270度的旋转,可以生成新的数据点。这样做可以使模型更好地适应不同的视角和方向。

  2. 裁剪:将图像裁剪到不同的大小和比例,可以创建具有不同视野的新图像。随机裁剪和特定比例的裁剪都是常见的方法。

  3. 颜色调整:调整图像的亮度、对比度、色调和饱和度可以创建具有不同外观的图像。但要小心,不要使图像过度扭曲,以免模型混淆。

  4. 图像叠加:在图像上叠加透明图像、纹理或噪声可以创建原始数据的变化。例如,添加水印、标志、污垢或高斯噪声等。

  5. 结合技术:结合多种增强技术可以进一步扩展数据集。例如,结合翻转、旋转、裁剪和颜色调整,可以生成更多样化的图像。

通过数据增强,可以扩展数据集的大小,而无需收集更多的原始图像。这有助于减少过拟合并提高模型的性能,同时也有助于节省训练时间和成本。但要注意不要过度增强,以免导致图像失真或模型混淆。

预处理步骤

对于图像项目项目,选择正确的预处理技术取决于数据的特点和项目的目标。常见的预处理步骤:

  1. 调整大小:将图像调整到统一的大小对机器学习算法至关重要。通常,图像会被调整为相同的高度和宽度,例如28x28或64x64像素。你可以使用OpenCV或Pillow库中的resize()方法来实现。

  2. 颜色转换:将图像转换为灰度或黑白可以简化分析并减少噪声。使用OpenCV中的cvtColor()方法将图像从RGB转换为灰度。对于黑白图像,可以使用阈值化来实现。

  3. 降噪:使用高斯模糊、中值模糊和双边过滤等技术可以减少噪声并平滑图像。OpenCV中的GaussianBlur()medianBlur()bilateralFilter()方法可以实现这些过滤器。

  4. 归一化:将像素值归一化到标准范围,例如0到1或-1到1,有助于算法更好地工作。你可以使用scikit-image中的normalize()方法来实现。

  5. 对比度增强:对于对比度较低的图像,可以使用直方图均衡化来提高对比度。OpenCV中的equalizeHist()方法可以执行此任务。

  6. 边缘检测:在图像中找到边缘或轮廓对于许多计算机视觉任务很有用。OpenCV中的Canny()方法中的Canny边缘检测器是一个常用的选择。

关键是根据项目的需求选择适当的预处理技术。从基本的调整大小开始,然后尝试不同的方法来改进图像质量,最终找到最适合你项目的预处理流程。通过实验,你将找到一个理想的预处理工作流程。

图像预处理常见问题

Python支持图像格式:

Python通过OpenCV和Pillow等库支持的一些主要格式包括:

  • JPEG:常见的有损图像格式
  • PNG:适用于具有透明度的图像的无损图像格式
  • TIFF:适用于高颜色深度图像的无损图像格式
  • BMP:未压缩的光栅图像格式

如何时调整图像大小:

当以下情况时,应该调整图像大小:

  • 图像太大,无法高效处理。减小大小可以加快处理速度。
  • 图像需要匹配机器学习模型的输入大小。
  • 图像需要在特定大小的屏幕或网页上显示。

常用的图像滤波:

一些流行的降噪技术包括:

  • 高斯模糊:使用高斯滤波器模糊图像并减少高频噪声。
  • 中值模糊:用邻近像素的中值替换每个像素。有效去除盐和胡椒噪声。
  • 双边滤波器:在保留边缘的同时模糊图像。它可以在保留锐利边缘的同时去除噪声。

OpenCV支持哪些颜色空间:

OpenCV支持RGB、HSV、LAB和灰度颜色空间。你可以使用cvtColor函数在颜色空间之间转换。例如:

# 将RGB转换为灰度
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)# 将RGB转换为HSV
hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)# 将RGB转换为LAB
lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)

转换到不同的颜色空间对于某些计算机视觉任务(如阈值化、边缘检测和对象跟踪)很有用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2904950.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

StarRocks实战——多点大数据数仓构建

目录 前言 一、背景介绍 二、原有架构的痛点 2.1 技术成本 2.2 开发成本 2.2.1 离线 T1 更新的分析场景 2.2.2 实时更新分析场景 2.2.3 固定维度分析场景 2.2.4 运维成本 三、选择StarRocks的原因 3.1 引擎收敛 3.2 “大宽表”模型替换 3.3 简化Lambda架构 3.4 模…

jmeter总结之:Regular Expression Extractor元件

Regular Expression Extractor是一个后处理器元件,使用正则从服务器的响应中提取数据,并将这些数据保存到JMeter变量中,以便在后续的请求或断言中使用。在处理动态数据或验证响应中的特定信息时很有用。 添加Regular Expression Extractor元…

Git,GitHub,Gitee,GitLab 四者有什么区别?

目录 1. Git 2. GitHub 3. Gitee 4. GitLab 5. 总结概括 1. Git Git 是一个版本管理工具,常应用于本地代码的管理,下载完毕之后,我们可以使用此工具对本地的资料,代码进行版本管理。 下载链接: Git - Downlo…

Micron 256 GB DDR5-8800 MCR DIMM:适用于大型服务器的大型内存

美光本周宣布,它已经开始对其 256 GB multiplexer combined (MCR) DIMM 进行采样,这是该公司迄今为止容量最大的内存模块。这些全新的基于 DDR5 的 MCRDIMM 面向下一代服务器,特别是那些由英特尔至强可扩展“Granite R…

最小可行产品需要最小可行架构——可持续架构(三)

前言 最小可行产品(MVP)的概念可以帮助团队专注于尽快交付他们认为对客户最有价值的东西,以便在投入大量时间和资源之前迅速、廉价地评估产品的市场规模。MVP不仅需要考虑产品的市场可行性,还需要考虑其技术可行性,以…

车载以太网AVB交换机 gptp透明时钟 8口 千兆/百兆可切换 SW1100TR

SW1100车载以太网交换机 一、产品简要分析 8端口千兆和百兆混合车载以太网交换机,其中包含2个通道的1000BASE-T1采用罗森博格H-MTD接口,5通道100BASE-T1泰科MATEnet接口和1个通道1000BASE-T标准以太网(RJ45接口),可以实现车载以太网多通道交…

Switch 和 PS1 模拟器:3000+ 游戏随心玩 | 开源日报 No.174

Ryujinx/Ryujinx Stars: 26.1k License: MIT Ryujinx 是用 C# 编写的实验性任天堂 Switch 模拟器。 该项目旨在提供出色的准确性和性能、用户友好的界面以及稳定的构建。它已经通过了大约 4050 个测试,其中超过 4000 个可以启动并进入游戏,其中大约 340…

7、鸿蒙学习-共享包概述

HarmonyOS提供了两种共享包,HAR(Harmony Archive)静态共享包,和HSP(Harmony Shared Package)动态共享包。 HAR与HSR都是为了实现代码和资源的共享,都可以包含代码、C库、资源和配置文件&#xf…

java算法day37 | 贪心算法 part06 ● 738.单调递增的数字 ● 968.监控二叉树

738.单调递增的数字 思路: 从后向前遍历,如果前一个数比后一个数大,则前一个数-1,后面的数都变成9. 思路不难,但实现的代码还是有一点繁琐的。 以下是用List实现的代码。 class Solution {public int monotoneIncrea…

【python分析实战】成本:揭示电商平台月度开支与成本结构占比 - 过于详细 【收藏】

重点关注本文思路,用python分析,方便大家实验复现,代码每次都用全量的,其他工具自行选择。 全文3000字,阅读10min,操作1小时 企业案例实战欢迎关注专栏 每日更新:https://blog.csdn.net/cciehl/…

uniapp输入框事件(防抖)

一、描述 在输入框输入内容或者说输入关键词的时候,往往都要进行做防抖处理。如果不做防抖,你输入什么,动态绑定的数据就会保持一致。这样不好吗,同步获取。有个业务场景,如果是搜索框,你每次一个字符&…

泛型,数据结构,集合

文章目录 泛型介绍解决问题好处使用通配符泛型的下限泛型的上限 数据结构定义常见的数据结构栈(先进后出)队列(先进先出)数组结构链表结构哈希表结构 集合List集合特点特有方法子类及其底层数据结构LinkedList集合 Set集合特点没有特有方法子类及其底层数据结构LinkedHashSet集…

「DevExpress中文教程」如何将DevExtreme JS HTML编辑器集成到WinForms应用

在本文中我们将演示一个混合实现:如何将web UI工具集成到WinForms桌面应用程序中。具体来说,我们将把DevExtreme JavaScript WYSIWYG HTML编辑器(作为DevExtreme UI组件套件的一部分发布的组件)集成到Windows Forms应用程序中。 获取DevExtreme v23.2正式…

计算机网络:物理层 - 信道极限容量

计算机网络:物理层 - 信道极限容量 实际信道中的数字信号奈式准则香农公式练习 实际信道中的数字信号 信号在传输过程中会受到各种因素的影响,如图所示: 这是一个数字信号,当它通过实际的信道后,波形会产生失真&#…

前端的拖拽序列(drag)

html和css代码如下 <style>.item {width: 200px;height: 50px;background: rgb(15, 226, 219);margin: 10px 0;padding-left: 20px;border-radius: 10px;line-height: 50px;}.item.move {background: transparent;color: transparent;border: 1px dashed #ccc;}</sty…

fpga 通过axi master读写PS侧DDR的仿真和上板测试

FPGA和ARM数据交互是ZYNQ系统中非常重要的内容。PS提供了供FPGA读写的AXI-HP接口用于两者的高速通信和数据交互。一般的&#xff0c;我们会采用AXI DMA的方式去传输数据&#xff0c;DMA代码基本是是C编写&#xff0c;对于FPGA开发者来说不利于维护和debug。本文提供一种手写AXI…

AI新工具 又一个开源大模型DBRX击败GPT3.5;根据音频和图像输入生成会说话、唱歌的动态视频

✨ 1: AniPortrait 腾讯开源&#xff1a;根据音频和图像输入生成会说话、唱歌的动态视频 AniPortrait 是个先进的框架&#xff0c;专门用来生成高质量的、由音频和参考肖像图片驱动的动画。如果你有视频&#xff0c;也可以用来实现面部的再现&#xff08;Face reenactment&am…

flink on yarn-per job源码解析、flink on k8s介绍

Flink 架构概览–JobManager JobManager的功能主要有: 将 JobGraph 转换成 Execution Graph,最终将 Execution Graph 拿来运行Scheduler 组件负责 Task 的调度Checkpoint Coordinator 组件负责协调整个任务的 Checkpoint,包括 Checkpoint 的开始和完成通过 Actor System 与 …

备份SQLserver数据库到本地位置

怎么选择合适的数据库备份方案&#xff1f; 有人可能会说SSMS&#xff0c;确实&#xff0c;SSMS作为一个微软官方提供的SQLserver数据库管理工具&#xff0c;是可以帮助我们完成对数据库的备份还原任务的&#xff0c;但是它也有一些局限性&#xff0c;比如不能进行批量化的备份…

实战 | 微调训练TrOCR识别弯曲文本

导 读 本文主要介绍如何通过微调训练TrOCR实现弯曲文本识别。 背景介绍 TrOCR&#xff08;基于 Transformer 的光学字符识别&#xff09;模型是性能最佳的 OCR 模型之一。在我们之前的文章中&#xff0c;我们分析了它们在单行打印和手写文本上的表现。 TrOCR—基于Transforme…