一文速通ESP32(基于MicroPython)——含示例代码

ESP32

简介

ESP32-S3 是一款集成 2.4 GHz Wi-Fi 和 Bluetooth 5 (LE) 的 MCU 芯片,支持远距离模式 (Long Range)。ESP32-S3 搭载 Xtensa® 32 位 LX7 双核处理器,主频高达 240 MHz,内置 512 KB SRAM (TCM),具有 45 个可编程 GPIO 管脚和丰富的通信接口。ESP32-S3 支持更大容量的高速 Octal SPI flash 和片外 RAM,支持用户配置数据缓存与指令缓存。

                                                                                                        ——乐鑫官网

从乐鑫的官网可以看出ESP32也分为很多种类,我这边用的是ESP32-S3型号的,型号不一样的小伙伴只需要在配置环境的时候选择对应的文件即可,其余代码部分都是一样的。

引脚分布图

可以看到上面这个引脚分布图跟我们之前看的都不一样,这个引脚分布图非常简洁,没有说哪个引脚一定是做什么用的(除了VCC和GND,RST等之类的),原因就在官方提供的datasheet中。

命名规则 

剩下一个介绍的就是命名规则了。

 我手上这款是ESP32-S3-N8R2,所以含义是正常Flash温度,8MB的Flash,具有2MB的PSRAM。但是有一点我没有明白,那就是我买的某宝店铺的定价。

 按理说16MB的Flash,8MB的PSRAM(N16R8)应该是要比我手上的8MB的Flash,2MB的PSRAM要贵的,但是结果却是相反的,我当初买的时候不知道,光挑贵的买了,结果好像是配置反而更低了。不懂是我有什么地方不明白的还是店家定价定错了。懂的小伙伴可以在评论区教我一下。

那么就简简单单介绍这么多,我们的主要目的还是快速上手。

环境配置

Thonny, Python IDE for beginnersicon-default.png?t=N7T8https://thonny.org/我们使用Thonny作为IDE,进入上面的链接直接下载即可。

一般情况下,按照我下面图片的指示,直接在Thonny中把固件烧录进去即可。

固件文件在下面的链接中去寻找。

MicroPython - Python for microcontrollersicon-default.png?t=N7T8https://micropython.org/download/

但我这个型号(ESP32-S3-N8R2)一直是烧不进去的,但应该是烧进去的,但是是有问题的。

整了一下午还是没弄好,固件反反复复烧了n次,还是一个样,最终还是找到了方法。

第一个就是在选择型号的时候,虽然我们是ESP32但是我们需要选择为ESP8266,原因仅是因为烧录的地址需要为0x00处,而在Thonny中无法指定烧录地址。

第二个就是选择固件文件的时候,选择版本低的。我一开始选择是最新版本的,然后烧录之后还是无法使用,之后跟了一个又一个教程去一次次烧录,最终以一种朴素的方法解决了我的问题,那就是换个低版本的,我最终成功的版本是我框出来的,v1.19.1的那个。

接下来我们就可以开始愉快的敲代码了。

microPython的用法我们可以从官网里找到,我们接下来也会围绕着官方文档进行。

Quick reference for the ESP32 — MicroPython latest documentationicon-default.png?t=N7T8http://micropython.com.cn/en/latet/esp32/quickref.html

GPIO

from machine import Pin

其实直接import machine也是可以的,但是熟悉Python的小伙伴会知道,当我们仅用其中几个类的时候,我们使用上面的写法会更好一些。 

我们照例是来点个灯,点个灯就需要控制GPIO,那么我们需要初始化GPIO对吧,其实所有单片机编程起来那可以说是万变不离其宗,我们都知道需要做什么,唯一不同的是不同单片机在不同环境下我们操作的方法不同。

我们知道需要初始化GPIO口了,那么我们从人家官方文档里找对应的方法即可。

参数id就是指定GPIO口的,我们直接填入对应的GPIO口的编号即可。

第二个模式可以有多种可选的,常用的就开头两个。

第三个选择是否连接电阻,一般我们仅输出的话是不连的,但如果要配置外部中断的话,也就是要输入,那么再根据需要去配置上拉电阻还是下拉电阻,简单来说,配置上拉电阻,那么默认读入的是高电平;配置下拉电阻,那么默认读入的是低电平。

第四个指定初始值。

后两个很少用,感兴趣的小伙伴自行查阅文档,这里就不介绍了。

配置完之后我们还需要操作GPIO的输出,可用的有以下五种方法。

最重要的是最后一个value函数。

上面文档中的解释太复杂了,简单来说就是给value函数参数,那么就算是指定输出的电平,如果不给参数,那么就算是读入当前这个GPIO口的电平。

知道怎么操作之后我们就可以开始写代码了。

以防有小伙伴不懂怎么使用Thonny来写MicroPython,我这里简单说一下。我们的MicroPython设备(也就是我们连接的ESP32)默认是只有一个boot.py文件,这个文件的内容是每次ESP32上电之后都会执行的。

但是我们一般代码不写在这里面,我们会新建一个py文件,然后把要执行的内容写在别的文件里,调试的时候我们直接在对应文件的界面进行运行即可,当我们程序定稿之后需要变成上电自动执行之后,我们会封装好执行内容,然后写在main.py文件里。

没错,main.py文件也是要我们新建的,ESP32上电后自动执行boot.py,然后boot.py会自动执行main.py。

关于这个我们可以做一个小实验。

我们分别在两个文件中都输出一句话。

没错,我们可以直接使用print来对我们的程序进行调试。

然后我们保存修改后的文件,接着按下复位键。

可以看到确实是像我们之前说的先执行boot再执行main。

闲话说多了,接下来我们开始点灯。

from machine import Pinp5=Pin(5,Pin.OUT)while True:#p5.off()#p5.low()p5.value(0)

编辑完代码之后我们直接点击运行当前脚本,然后我们就惊奇地发现,点灯成功。

根据我们的惯例(参考之前一文速通ESP8266),点灯完之后我们就要让它闪烁了。

延时

import time

根据官方文档提供的例子我们可以发现,一共有三种延时函数。例子中最后两行设计的函数是统计ESP32运行时间的,基本没什么用。

三种延时函数分别是以秒,毫秒,微妙为单位的,我们随便用哪个都行,一般毫秒用的比较多。

接下来我们让LED闪烁。

from machine import Pin
import timep5=Pin(5,Pin.OUT)while True:p5.value(0)time.sleep_ms(500)p5.value(1)time.sleep_ms(500)

由于照片拍不出闪烁的效果,那我就不拍照了(偷懒)。

要让LED闪烁,除了上面的这种写法,我们还可以通过获取当前GPIO的电平,然后输出相反的电平即可,这样可以使代码更加简洁。

from machine import Pin
import timep5=Pin(5,Pin.OUT)while True:p5.value(not p5.value())time.sleep_ms(500)

平时C/C++的代码写多了,代码报错之后才回过神来,Python中的取非不是!,而是直接写个not

定时

from machine import Timer

除了使用延时,我们还可以使用定时来完成我们的LED闪烁效果,最重要的是不会阻塞我们的主逻辑。

我们最多可以使用四个定时器,因此给Timer构造函数传入的参数(ID)应为0~3,但实际上你写多少都可以,但是会对传入的参数进行一个取余4的操作,因此还是只能用四个定时器,如果多个定时器初始化传入的ID相同,那么后面创建的定时器会把更早创建的覆盖掉。

获得定时器对象之后我们还需要调用初始化(init)函数(有一点点反直觉,因为我觉得创建时候调用的构造函数应该就算是初始化了)。

init函数的第一个参数传入定时器周期,单位为毫秒。

第二个参数指定模式,定时任务可以是只执行一次(Timer.ONE_SHOT),也可以是周期性执行(Timer.PERIODIC)。

第三个参数传入回调函数,可以是lambda。回调函数接收一个参数,这个参数是定时器对象,但这个不是我们的定时器。

还有一个函数,上面的例子中没有提及,那就是取消定时任务,我们使用deinit函数。

接下来我们使用定时来改一下LED闪烁的代码。

from machine import Pin
from machine import Timer
import timep5=Pin(5,Pin.OUT)
t0=Timer(0)
t1=Timer(1)t0.init(period=500,mode=Timer.PERIODIC,callback=lambda t:p5.value(not p5.value()))
t1.init(period=5000,mode=Timer.ONE_SHOT,callback=lambda t:t0.deinit())while True:pass

上面的代码使用了两个定时器,一个定了500ms为周期的翻转GPIO电平的定时任务,一个定了5s后执行一次的关闭第一个定时器任务的定时任务。

可以发现LED闪烁五次之后就停止闪烁了,可见我们已经成功地使用了定时。

PWM

from machine import PWM

除了让LED闪烁,我们还可以让LED出现呼吸灯的效果,那就是输出PWM。

构造函数的第一个参数指定一个GPIO口,这里不是填入一个编号了,而是需要传入一个GPIO的对象。

第二个参数填入PWM的频率,范围是1~40MHz。

后面有三个参数,三选一。分别是duty,duty_u16,duty_ns。都是设置占空比的。

duty传入0~1024,duty_u16传入0~65535,而duty_ns传入的是以纳秒为单位来设置脉冲宽度。

接下来我就直接拿代码来演示一下LED呼吸灯。

from machine import Pin
from machine import PWM
import timep5=Pin(5,Pin.OUT)
p=PWM(p5,10000000,duty=0)while True:for i in range(0,1023):p.duty(i)time.sleep_ms(1)for i in range(1023,0,-1):p.duty(i)time.sleep_ms(1)

另外,使用freq,duty,dutty_u16等同名函数也可以获取与设置频率,占空比等数值,可以参考GPIO的value函数。

ADC

from machine import ADC

参数比较简单,第一个是GPIO口的对象,第二个指定输入衰减,也可以看作是指定模拟信号的电压范围。

然后我们调用read函数即可读取转换值。

from machine import Pin
from machine import ADC
import timep5=Pin(5,Pin.IN)
a=ADC(p5,atten=ADC.ATTN_11DB)while True:print(a.read())time.sleep(1)

操作存储器

在一文速通ESP8266中我们有操作存储器的介绍,在ESP32中就不介绍了,因为完全跟Python进行文件操作一样。

import timewith open("abc.txt","w") as f:f.write("abcdefg")f.flush()while True:with open("boot.py","r") as f:while True:data=f.readline()if not data:breakprint(data)time.sleep(5)

UART串口通信

from machine import UART

第一个参数id,传入0~2,一个三个UART。

第二个参数传入波特率。

第三第四个指定tx和rx的引脚。

后面几个参数指定数据位,校验位,停止位什么的,我们一般用默认即可,也就是八位数据一位停止,没有校验。感兴趣的小伙伴可以自行去官方文档查阅。

构造出UART对象之后,我们最重要的是收发数据,相关的函数也很简单,writeread分别是写和读,其中read需要传入一个参数,表示我们最多读取的字节数,读出的也是字节。

使用any函数可以判断是否有接收到数据。

from machine import Pin
from machine import UART
import timeu=UART(1,9600,rx=9,tx=10)
p5=Pin(5,Pin.OUT)while True:u.write("hello world")if u.any():p5.value(not p5.value())print(u.read(1024))time.sleep(1)

WiFi

import network

接下来就是重头戏啦,我们连接上WiFi之后就可以进入物联网的重头戏MQTT啦。

与之前ArduinoIDE写的ESP8266不一样的是,如果我们连上了WiFi,那么默认是就算是后续断开了WiFI,它也会继续尝试连接,而我们之前ESP8266里我们需要手动检测WiFi是否断开,如果断开则需要手动重连。

关于这一点我已经用下面的代码测试过了,逻辑就是一开始配置一下连接代码,在主循环里,如果WiFI保持连接,那么LED亮,没有连接WiFi则LED灭。

运行下面代码后我手动断过几次手机热点,只要手机热点再次开启,那么LED还是会亮起来。

from machine import Pin
import time
import networkp5=Pin(5,Pin.OUT)w=network.WLAN(network.STA_IF)
w.active(True)
w.connect("zhetu","zhetu123")while True:if w.isconnected():p5.off()else:p5.on()time.sleep(1)

其实根据我上面的代码以及更上面官方文档中的示例,也可以知道如何连接WiFi了,或者直接把官方文档中提供的函数do_connect拿来用即可。

def do_connect():import networkwlan = network.WLAN(network.STA_IF)wlan.active(True)if not wlan.isconnected():print('connecting to network...')wlan.connect('ssid', 'key')while not wlan.isconnected():passprint('network config:', wlan.ifconfig())

不过接下来就稍微讲一下连接WiFi的过程。

首先是要构造出一个WLAN对象出来,WLAN的构造函数只需要传入一个参数,那就是指定模式,可以是network.AP_IFnetwork.STA_IF,分别是开热点模式和连接WiFi模式,我们一般用的都是后者,因为就算我们开了热点那也是无法联网的。

接着是激活它,用active函数,给一个布尔值,True则激活,False则关闭。

然后使用connect函数连接WiFi,传入两个参数,依次是WiFI名和WiFi密码。

最后使用isconnected函数,根据其返回值判断是否连接上了WiFi。

disconnect函数可以手动关闭WiFi连接。

其他一些获取配置或是设置配置的函数,感兴趣的小伙伴可以去官方文档查看。

MQTT

GitHub - juwul/umqtt_aws_iot: Publish UMQTT messages with Micropython to AWS IoTPublish UMQTT messages with Micropython to AWS IoT - juwul/umqtt_aws_ioticon-default.png?t=N7T8https://github.com/juwul/umqtt_aws_iot

MicroPython中没有提供给我们MQTT,但是不代表我们不能使用MicroPython来使用MQTT,上面的链接中我们可以获取到别人写的第三方库。

直接把lib中的simple.py复制出来放进ESP32中即可。

这个第三方库的优点是它非常小,仅仅是200行代码,后续如果想要学习一下,200行代码也不难看懂,并且操作非常简单。缺点是因为小巧,所以功能相对简陋,但是绝对是够用的,另外一个就是在github上,需要有点方法才可以进去,进不去的小伙伴复制下面的代码也是一样的。

import usocket as socket
import ustruct as struct
from ubinascii import hexlifyclass MQTTException(Exception):passclass MQTTClient:def __init__(self, client_id, server, port=0, user=None, password=None, keepalive=0,ssl=False, ssl_params={}):if port == 0:port = 8883 if ssl else 1883self.client_id = client_idself.sock = Noneself.addr = socket.getaddrinfo(server, port)[0][-1]self.ssl = sslself.ssl_params = ssl_paramsself.pid = 0self.cb = Noneself.user = userself.pswd = passwordself.keepalive = keepaliveself.lw_topic = Noneself.lw_msg = Noneself.lw_qos = 0self.lw_retain = Falsedef _send_str(self, s):self.sock.write(struct.pack("!H", len(s)))self.sock.write(s)def _recv_len(self):n = 0sh = 0while 1:b = self.sock.read(1)[0]n |= (b & 0x7f) << shif not b & 0x80:return nsh += 7def set_callback(self, f):self.cb = fdef set_last_will(self, topic, msg, retain=False, qos=0):assert 0 <= qos <= 2assert topicself.lw_topic = topicself.lw_msg = msgself.lw_qos = qosself.lw_retain = retaindef connect(self, clean_session=True):self.sock = socket.socket()self.sock.connect(self.addr)if self.ssl:import usslself.sock = ussl.wrap_socket(self.sock, **self.ssl_params)msg = bytearray(b"\x10\0\0\x04MQTT\x04\x02\0\0")msg[1] = 10 + 2 + len(self.client_id)msg[9] = clean_session << 1if self.user is not None:msg[1] += 2 + len(self.user) + 2 + len(self.pswd)msg[9] |= 0xC0if self.keepalive:assert self.keepalive < 65536msg[10] |= self.keepalive >> 8msg[11] |= self.keepalive & 0x00FFif self.lw_topic:msg[1] += 2 + len(self.lw_topic) + 2 + len(self.lw_msg)msg[9] |= 0x4 | (self.lw_qos & 0x1) << 3 | (self.lw_qos & 0x2) << 3msg[9] |= self.lw_retain << 5self.sock.write(msg)#print(hex(len(msg)), hexlify(msg, ":"))self._send_str(self.client_id)if self.lw_topic:self._send_str(self.lw_topic)self._send_str(self.lw_msg)if self.user is not None:self._send_str(self.user)self._send_str(self.pswd)resp = self.sock.read(4)assert resp[0] == 0x20 and resp[1] == 0x02if resp[3] != 0:raise MQTTException(resp[3])return resp[2] & 1def disconnect(self):self.sock.write(b"\xe0\0")self.sock.close()def ping(self):self.sock.write(b"\xc0\0")def publish(self, topic, msg, retain=False, qos=0):pkt = bytearray(b"\x30\0\0\0")pkt[0] |= qos << 1 | retainsz = 2 + len(topic) + len(msg)if qos > 0:sz += 2assert sz < 2097152i = 1while sz > 0x7f:pkt[i] = (sz & 0x7f) | 0x80sz >>= 7i += 1pkt[i] = sz#print(hex(len(pkt)), hexlify(pkt, ":"))self.sock.write(pkt, i + 1)self._send_str(topic)if qos > 0:self.pid += 1pid = self.pidstruct.pack_into("!H", pkt, 0, pid)self.sock.write(pkt, 2)self.sock.write(msg)if qos == 1:while 1:op = self.wait_msg()if op == 0x40:sz = self.sock.read(1)assert sz == b"\x02"rcv_pid = self.sock.read(2)rcv_pid = rcv_pid[0] << 8 | rcv_pid[1]if pid == rcv_pid:returnelif qos == 2:assert 0def subscribe(self, topic, qos=0):assert self.cb is not None, "Subscribe callback is not set"pkt = bytearray(b"\x82\0\0\0")self.pid += 1struct.pack_into("!BH", pkt, 1, 2 + 2 + len(topic) + 1, self.pid)#print(hex(len(pkt)), hexlify(pkt, ":"))self.sock.write(pkt)self._send_str(topic)self.sock.write(qos.to_bytes(1, "little"))while 1:op = self.wait_msg()if op == 0x90:resp = self.sock.read(4)#print(resp)assert resp[1] == pkt[2] and resp[2] == pkt[3]if resp[3] == 0x80:raise MQTTException(resp[3])return# Wait for a single incoming MQTT message and process it.# Subscribed messages are delivered to a callback previously# set by .set_callback() method. Other (internal) MQTT# messages processed internally.def wait_msg(self):res = self.sock.read(1)self.sock.setblocking(True)if res is None:return Noneif res == b"":raise OSError(-1)if res == b"\xd0":  # PINGRESPsz = self.sock.read(1)[0]assert sz == 0return Noneop = res[0]if op & 0xf0 != 0x30:return opsz = self._recv_len()topic_len = self.sock.read(2)topic_len = (topic_len[0] << 8) | topic_len[1]topic = self.sock.read(topic_len)sz -= topic_len + 2if op & 6:pid = self.sock.read(2)pid = pid[0] << 8 | pid[1]sz -= 2msg = self.sock.read(sz)self.cb(topic, msg)if op & 6 == 2:pkt = bytearray(b"\x40\x02\0\0")struct.pack_into("!H", pkt, 2, pid)self.sock.write(pkt)elif op & 6 == 4:assert 0# Checks whether a pending message from server is available.# If not, returns immediately with None. Otherwise, does# the same processing as wait_msg.def check_msg(self):self.sock.setblocking(False)return self.wait_msg()

人家项目的名字我框出来了,那么我们就直接在ESP32中新建一个“umqtt.py”然后把代码直接复制进去就可以直接使用了(文件名随意起)。

由于这个第三方库比较简单,估计了解MQTT的小伙伴,光是看人家的函数命名都可以知道该怎么操作,那么我们就先简单来个小例子,然后再稍微讲解一下。

from machine import Pin
import time
import network
import umqttp5=Pin(5,Pin.OUT)w=network.WLAN(network.STA_IF)
w.active(True)
w.connect("zhetu","zhetu123")def mqtt_callback(topic,data):    #回调函数,直接把主题名和内容体打印出来print(topic,data)while not w.isconnected():    #确保WiFI连接上了,后续才可以连接MQTT服务器passmqtt=umqtt.MQTTClient("连接服务器用的ID","mqtt服务器IP")
mqtt.set_callback(mqtt_callback)
mqtt.connect()
mqtt.subscribe(b"aaa")while True:mqtt.check_msg()            #检测是否接受到订阅信息if w.isconnected():p5.off()else:p5.on()time.sleep(1)

根据构造函数我们可以得知,我们仅需要传入两个参数即可,一个是连接MQTT服务器用的ID,另一个是MQTT服务器的IP地址。剩下的配置也可以进行设置,但是不是必须的,我们简单演示一下就没用上。

那么构造完得到一个MQTTClient的对象之后,我们要做的是设置回调函数,就是下面这个函数,我们传入一个回调函数,回调函数接收两个参数,依次是主题名和内容体。

那么我是怎么知道的呢,当然是看代码啦。

根据对MQTT的了解以及对英文名称大概的意思就可以知道。

设置完回调函数之后我们还需要订阅主题,要收到消息我们还需要先订阅是吧。

使用下面的函数,直接传入主题名称即可。

接着就可以连接MQTT服务器了。

用下面这函数,可以不传入参数。

上面的配置完之后我们离成功就剩一点点啦。

我们需要在主循环体里不断的检测是否收到数据,收到数据则会主动调用回调函数。

检测使用下面这个函数。

看得出来这还涉及到了另外一个函数,感兴趣的小伙伴自己去看代码吧。

最后还有一个功能,那就是发布信息。

我们至少需要传入两个参数,依次是主题名和内容体。

小结

至此,我们就速通了ESP32啦。

这里就小小的总结一下踩过的坑,第一个就是环境配置啦,不要选择最新的固件文件!!!

第二个就是串口的引脚选择,尽量咱就是使用人家默认的引脚,虽然自定义也可以,但是很容易出问题,比如我不信邪,试过使用与UART的ID不匹配的引脚,结果遇到了print使用不了以及RX引脚接收不到数据等的事情,所以虽然ESP32的引脚映射功能很强大,但是在UART串口中,我们还是尽量使用官方推荐的默认引脚。

最后一个是MQTT,值得一提的是,接受订阅信息的回调函数的两个参数都是字节类型的,因此如果我们需要锁定某个主题的时候,需要把和回调函数的主题名的参数比较的那个字符串转为字节。

最后的最后打个小广告。文中涉及的所有资料我都已经打包好了,关注我的公众号“折途想要敲代码”回复关键词“ESP32”即可免费下载。

当然,文章中的链接也都是可以直接点击前往下载对应的资源的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2871547.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

App推广不再难!Xinstall神器助你快速获客,提升用户留存

在如今的移动互联网时代&#xff0c;App推广已经成为了各大应用商家争夺用户的重要手段。然而&#xff0c;面对竞争激烈的市场环境&#xff0c;如何快速提升推广效率&#xff0c;先人一步获得用户呢&#xff1f;这就需要我们借助专业的App全渠道统计服务商——Xinstall的力量。…

MySQL 多表查询强化练习

环境准备 create table dept(id int PRIMARY KEY,dname VARCHAR(50),loc VARCHAR(50) ); insert into dept values (10,研发部,北京), (20,学工部, 上海), (30,销售部,广州 ), (40,财务部,深圳);create table job(id int PRIMARY KEY,jname VARCHAR(20),descripition VARCHAR(…

机器学习——压缩网络作业

文章目录 任务描述介绍知识蒸馏网络设计 Baseline实践 任务描述 网络压缩&#xff1a;使用小模型模拟大模型的预测/准确性。在这个任务中&#xff0c;需要训练一个非常小的模型来完成HW3&#xff0c;即在food-11数据集上进行分类。 介绍 有许多种网络/模型压缩的类型&#xff0…

ElasticSearch常见用法,看这一篇就够了(文末送书)

2024送书福利正式起航 关注「哪吒编程」&#xff0c;提升Java技能 文末送3本《一本书讲透Elasticsearch&#xff1a;原理、进阶与工程实践》 大家好&#xff0c;我是哪吒。 ElasticSearch是一款由Java开发的开源搜索引擎&#xff0c;它以其出色的实时搜索、稳定可靠、快速安…

【Linux】进程与可执行程序的关系fork创建子进程写实拷贝的理解

一、进程与可执行程序之间关系的理解 系统会将此时在系统运行的进程的各种属性都以文件的形式给你保存在系统的proc目录下。运行一个程序的时候&#xff0c;本质就是把磁盘中的程序拷贝到内存中&#xff0c;当一个进程运行起来的时候&#xff0c;它本质已经和磁盘中的可执行程序…

Epuck2 在 ROS 下的运动控制

文章目录 前言一、初始配置二、运动控制三、移动机器人总结 前言 在对Epuck2机器人进行完固件更新及IP地址查询后&#xff0c;接下来通过ROS来对Epuck2机器人进行运动控制。 一、初始配置 &#xff08;1&#xff09;创建一个 catkin 工作空间 mkdir -p ~/catkin_ws/src cd ~…

cmd常用指令

cmd全称Command Prompt&#xff0c;中文译为命令提示符。 命令提示符是在操作系统中&#xff0c;提示进行命令输入的一种工作提示符。 在不同的操作系统环境下&#xff0c;命令提示符各不相同。 在windows环境下&#xff0c;命令行程序为cmd.exe&#xff0c;是一个32位的命令…

通俗易懂的Python循环讲解

循环用于重复执行一些程序块。从上一讲的选择结构&#xff0c;我们已经看到了如何用缩进来表示程序块的隶属关系。循环也会用到类似的写法。 for循环 for循环需要预先设定好循环的次数(n)&#xff0c;然后执行隶属于for的语句n次。 基本构造是 for 元素 in 序列: statemen…

ClickHouse中的设置的分类

ClickHouse中的各种设置 ClickHouse中的设置有几百个&#xff0c;下面对这些设置做了一个简单的分类。

C语言疑难题:杨辉三角形、辗转相除求最大公约数、求π的近似值、兔子问题、打印菱形

杨辉三角形&#xff1a;打印杨辉三角形的前10行 /* 杨辉三角形&#xff1a;打印杨辉三角形的前10行 */ #include<stdio.h> int main(){ int i,j; int a[10][10]; printf("\n"); for(i0;i<10;i){ a[i][0]1; a[i][i]1; …

提升Java IO性能!探究BufferedOutputStream的奥秘

咦咦咦&#xff0c;各位小可爱&#xff0c;我是你们的好伙伴——bug菌&#xff0c;今天又来给大家普及Java IO相关知识点了&#xff0c;别躲起来啊&#xff0c;听我讲干货还不快点赞&#xff0c;赞多了我就有动力讲得更嗨啦&#xff01;所以呀&#xff0c;养成先点赞后阅读的好…

【系统架构师】-第4章-信息安全技术

1、基础知识 五要素&#xff1a; (1)机密性&#xff1a;确保信息不暴露给未授权的实体或进程。 (2)完整性&#xff1a;只有得到允许的人才能修改数据&#xff0c;并且能够判别出数据是否已被篡改。 (3)可用性&#xff1a;得到授权的实体在需要时可访问数据&#xff0c;即攻击…

力扣刷题Days20-151. 反转字符串中的单词(js)

目录 1,题目 2&#xff0c;代码 1&#xff0c;利用js函数 2&#xff0c;双指针 3&#xff0c;双指针加队列 3&#xff0c;学习与总结 1&#xff0c;正则表达式 / \s /&#xff1a; 2&#xff0c;结合使用 split 和正则表达式&#xff1a; 1,题目 给你一个字符串 s &am…

ChatGPT提示词方法的原理

关于提示词&#xff0c;我之前的一些文章可以参考&#xff1a; 【AIGC】AI作图最全提示词prompt集合&#xff08;收藏级&#xff09;https://giszz.blog.csdn.net/article/details/134815245?ydrefereraHR0cHM6Ly9tcC5jc2RuLm5ldC9tcF9ibG9nL21hbmFnZS9hcnRpY2xlP3NwbT0xMDExL…

RunnerGo测试平台的安装和使用

文章适用于想RunnerGo入门的同学&#xff0c;本人主要是后端&#xff0c;这里做一个入门的学习记录。想深入适用RunnerGo的同学可以参考官网文档&#xff1a; https://wiki.runnergo.cn/docs/ 这里我测试的代码是之前搭建的一个前后端分离小demo&#xff0c;代码地址是https:/…

Rocket MQ 从入门到实践

为什么要使用消息队列&#xff0c;解决什么问题&#xff1f;&#xff08;消峰、解藕、异步&#xff09; 消峰填谷 客户端》 网关 〉 消息队列》秒杀服务 异步解耦 消息队列中的重要概念理解。&#xff08;主题、消费组、队列&#xff0c;游标&#xff1f;&#xff09; 主题&…

Vulnhub - Toppo

希望和各位大佬一起学习&#xff0c;如果文章内容有错请多多指正&#xff0c;谢谢&#xff01; 个人博客链接&#xff1a;CH4SER的个人BLOG – Welcome To Ch4sers Blog Toppo 靶机下载地址&#xff1a;Toppo: 1 ~ VulnHub 搭建&#xff1a;创建任意虚拟机&#xff0c;然后…

【网络编程基础(一)】网络基础和SOCKET

这里写目录标题 1、网络三要素2、IPV4和IPV6区别3、网络交互3.1、交互模型图3.2、基础通信协议3.3、OSI参考模型与TCP/IP参考模型对应关系 4、SOCKET网络套接字4.1、SOCKET分类4.2、基于流式套接字的编程流程4.3、网络通信雏形4.4、socket函数4.4.1、socket函数示例 4.5、bind函…

idea 的基本配置

一、安装目录介绍 其中&#xff1a;bin 目录下&#xff1a; 二、配置信息目录结构 这是 IDEA 的各种配置的保存目录。这个设置目录有一个特性&#xff0c;就是你删除掉整个目录之后&#xff0c;重新启动 IntelliJ IDEA 会再自动帮你生成一个全新的默认配置&#xff0c;所以很多…

串的模式匹配(简单匹配、KMP以及手工算next/nextval)

简单模式匹配 思路&#xff1a;主串和字串进行匹配&#xff0c;设置i、j、k&#xff08;主串、子串和匹配起始下标&#xff09;主串和子串一开始都是从第一个位置&#xff08;k i&#xff09;&#xff0c;若当前主串和子串匹配成功那么i、j&#xff0c;若匹配不成功k、j 1&am…