YOLOv9改进策略:注意力机制 | SimAM(无参Attention),效果秒杀CBAM、SE

     💡💡💡本文改进内容:SimAM是一种轻量级的自注意力机制,其网络结构与Transformer类似,但是在计算注意力权重时使用的是线性层而不是点积

yolov9-c-CoordAtt summary: 972 layers, 51024476 parameters, 51024444 gradients, 238.9 GFLOPs

 改进结构图如下:

YOLOv9魔术师专栏

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨

🚀🚀🚀 本项目持续更新 | 更新完结保底≥50+ ,冲刺100+🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等

 YOLOv9魔术师

💡💡💡全网独家首发创新(原创),适合paper !!!

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

 1.YOLOv9原理介绍

论文: 2402.13616.pdf (arxiv.org)

代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。

 YOLOv9框架图

1.1 YOLOv9框架介绍

YOLOv9各个模型介绍

2. SimAM:无参Attention

论文: http://proceedings.mlr.press/v139/yang21o/yang21o.pdf

        SimAM(Simple Attention Mechanism)是一种轻量级的自注意力机制,其网络结构与Transformer类似,但是在计算注意力权重时使用的是线性层而不是点积。其网络结构如下:

输入序列 -> Embedding层 -> Dropout层 -> 多层SimAM层 -> 全连接层 -> Softmax层 -> 输出结果

其中,SimAM层由以下几个部分组成:

  1. 多头注意力层:输入序列经过多个线性映射后,分成多个头,每个头计算注意力权重。

  2. 残差连接层:将多头注意力层的输出与输入序列相加,保证信息不会丢失。

  3. 前向传递层:对残差连接层的输出进行线性变换和激活函数处理,再与残差连接层的输出相加。

  4. 归一化层:对前向传递层的输出进行层归一化处理,加速训练并提高模型性能。

通过多层SimAM层的堆叠,模型可以学习到输入序列中的长程依赖关系,并生成对应的输出序列。

 

 在不增加原始网络参数的情况下,为特征图推断三维注意力权重
1、提出优化能量函数以发掘每个神经元的重要性
2、针对能量函数推导出一种快速解析解,不超过10行代码即可实现。 

表格给出了ImageNet数据集上不同注意力机制的性能对比,从中可以看到:

  • 所有注意力模块均可以提升基线模型的性能;
  • 所提SimAM在ResNet18与ResNet101基线上取得了最佳性能提升;
  • 对于ResNet34、ResNet50、ResNeXt50、MobileNetV2,所提SimAM仍可取得与其他注意力相当性能;
  • 值得一提的是,所提SimAM并不会引入额外的参数
  • 在推理速度方面,所提SimAM与SE、ECA相当,优于CBAM、SRM。

1.1 加入yolov8 modules.py

      

3.SimAM加入到YOLOv9

3.1新建py文件,路径为models/attention/attention.py

######################  SimAM   ####     start   by  AI&CV  ###############################
import torch
from torch import nn
from torch.nn import init
import torch.nn.functional as Fclass SimAM(torch.nn.Module):def __init__(self,c1, e_lambda=1e-4):super(SimAM, self).__init__()self.activaton = nn.Sigmoid()self.e_lambda = e_lambdadef __repr__(self):s = self.__class__.__name__ + '('s += ('lambda=%f)' % self.e_lambda)return s@staticmethoddef get_module_name():return "simam"def forward(self, x):b, c, h, w = x.size()n = w * h - 1x_minus_mu_square = (x - x.mean(dim=[2, 3], keepdim=True)).pow(2)y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2, 3], keepdim=True) / n + self.e_lambda)) + 0.5return x * self.activaton(y)
######################  SimAM   ####     end   by  AI&CV  ###############################

3.2修改yolo.py

1)首先进行引用

from models.attention.attention import *

2)修改def parse_model(d, ch):  # model_dict, input_channels(3)

在源码基础上加入SimAM

        elif m is nn.BatchNorm2d:args = [ch[f]]###attention #####elif m in {EMA_attention,CoordAtt,SimAM}:c2 = ch[f]args = [c2, *args]###attention #####

3.3 yolov9-c-SimAM.yaml

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9[-1, 1, SimAM, [512]],  # 10]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 11# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 14# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 17 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 14], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 11], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 23 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 24[7, 1, CBLinear, [[256, 512]]], # 25[9, 1, CBLinear, [[256, 512, 512]]], # 26# conv down[0, 1, Conv, [64, 3, 2]],  # 27-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 28-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 29# avg-conv down fuse[-1, 1, ADown, [256]],  # 30-P3/8[[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 32# avg-conv down fuse[-1, 1, ADown, [512]],  # 33-P4/16[[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 35# avg-conv down fuse[-1, 1, ADown, [512]],  # 36-P5/32[[26, -1], 1, CBFuse, [[2]]], # 37# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38# detection head# detect[[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2869548.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

L4 级自动驾驶汽车发展综述

摘要:为了减小交通事故概率、降低运营成本、提高运营效率,实现安全、环保的出行,自动驾驶 技术的发展已成为大势所趋,而搭配有L4 级自动驾驶系统的车辆是将车辆驾驶全部交给系统。据此,介绍了自动驾驶汽车的主流技术解决方案;分析了国内外L4 级自动驾驶汽车的已发布车型、…

学点Java打小工_Day4_Homework

1 统计数字 1 int[] scores{0,0,1,2,3,5,4,5,2,8,7,6,9,5,4,8,3,1,0,2,4,8,7,9,5,2,1,2,3,9}; 求出上面数组中0-9分别出现的次数 (双重for循环) Testpublic void solveProblem1() {int[] scores {0,0,1,2,3,5,4,5,2,8,7,6,9,5,4,8,3,1,0,2,4,8,7,9,5,2,…

JavaWeb笔记 --- 三、MyBatis

三、MyBatis 概述 MyBatis是一个持久层框架,用于简化JDBC Mapper代理开发 在resources配置文件包中创建多级目录用 / MyBatis核心配置文件 enviroments:配置数据库连接环境信息。 可以配置多个enviroment,通过default属性切换不同的envir…

大衍数列-蓝桥杯?-Lua 中文代码解题第2题

大衍数列-蓝桥杯?-Lua 中文代码解题第2题 中国古代文献中,曾记载过“大衍数列”, 主要用于解释中国传统文化中的太极衍生原理。 它的前几项是:0、2、4、8、12、18、24、32、40、50 … 其规律是:对偶数项,是序号平方再除…

数据可视化-ECharts Html项目实战(1)

在之前的文章中,我们学习了如何安装Visual Studio Code并下载插件,想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下你宝贵的点赞,谢谢。 安装 Visual Studio…

MATLAB环境下基于稀疏方法的基线校正

以光谱信号为例进行说明,光谱信号中基线的存在会降低样品定性和定量分析的准确性,因此在光谱分析前对光谱进行基线校正具有重要意义。光谱数据在采集过程中易受温度、湿度等环境因素影响,发生基线偏移现象。该现象不仅会导致纯谱的谱峰发生形…

CSS3技巧38:3D 翻转数字效果

博主其它CSS3 3D的文章: CSS3干货4:CSS中3D运用_css 3d-CSDN博客 CSS3干货5:CSS中3D运用-2_中3d-2-CSDN博客 CSS3干货6:CSS中3D运用-3_css3d 使用-CSDN博客 最近工作上烦心的事情太多,只有周末才能让我冷静一下 cod…

AI毕业论文降重GPTS,避免AI检测,高效完成论文

视频演示 AI毕业论文降重GPTS,避免AI检测,高效完成论文! 开发目的 “毕业论文降重”GPTS应用,作用为:重新表述学术论文,降低相似性评分,避免AI检测。 使用地址 地址:毕业论文降重…

回答自己一年前的一个问题,python如何动态拼接sql

首先谈谈应用场景吧,前提是针对查询接口做接口自动化,接口校验的脚本中,一般以响应报文作为预期值,通过sql查出的数据库值作为实际值,二者对比通过则认为接口输出正确。而sql从何而来呢,对于查询接口一般是…

【MySQL高级篇】08-事务篇

第13章:事务基础知识 #09-事务的基础知识#1.事务的完成过程 #步骤1:开启事务 #步骤2:一系列的DML操作 #.... #步骤3:事务结束的状态:提交的状态(COMMIT) 、 中止的状态(ROLLBACK)#2. 显式事务#2.1 如何开启? 使用关键…

npm下载慢换国内镜像地址

1 设置淘宝镜像地址 npm config set registry http://registry.npm.taobao.org 2 查看当前下载地址 npm config get registry 3 其它镜像地址列表: 1. 官方镜像:https://registry.npmjs.org/ 2. 淘宝镜像:https://registry.npm.taobao.o…

Linux 基础-查看和设置环境变量

一,查看环境变量 在 Linux中,环境变量是一个很重要的概念。环境变量可以由系统、用户、Shell 以及其他程序来设定,其是保存在变量 PATH 中。环境变量是一个可以被赋值的字符串,赋值范围包括数字、文本、文件名、设备以及其他类型…

图解缓存淘汰算法 LRU、LFU | 最近最少使用、最不经常使用算法 | go语言实现

写在前面 无论是什么系统,在研发的过程中不可避免的会使用到缓存,而缓存一般来说我们不会永久存储,但是缓存的内容是有限的,那么我们如何在有限的内存空间中,尽可能的保留有效的缓存信息呢? 那么我们就可以…

VS2022实现简单控件的缩放

private float X;//当前窗体的宽度private float Y;//当前窗体的高度public Form1(){InitializeComponent();}// 将控件的宽,高,左边距,顶边距和字体大小暂存到tag属性中private void setTag(Control cons){foreach (Control con in cons.Con…

C语言之归并排序

目录 一 简介 二 代码实现 三 时空复杂度 A.时间复杂度: B.空间复杂度: C.总结: 一 简介 归并排序(Merge Sort)是一种基于分治策略的高效排序算法,其基本思想是将一个大问题分解为若干个规模较小且相…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:RowSplit)

将子组件横向布局,并在每个子组件之间插入一根纵向的分割线。 说明: 该组件从API Version 7开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 子组件 可以包含子组件。 RowSplit通过分割线限制子组件的宽度。初始化…

数据可视化-ECharts Html项目实战(2)

在之前的文章中,我们学习了如何创建简单的折线图,条形图,柱形图并实现动态触发,最大最小平均值。想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下…

11.进程的同步与互斥

11.进程的同步与互斥 计数信号量及其初始化 和王道里面学的PV操作一摸一样,带个count变量,带个阻塞队列 //D:\code\x86\code\start\start\source\kernel\include\ipc\sem.h #ifndef OS_SEM_H #define OS_SEM_H#include "tools/list.h"/*** 进程同步用的计数信号量*…

linux源配置:ubuntu、centos

1、ubuntu源配置 1)先查电脑版本型号: lsb_release -c2)再编辑源更新,源要与上面型号对应 参考:https://midoq.github.io/2022/05/30/Ubuntu20-04%E6%9B%B4%E6%8D%A2%E5%9B%BD%E5%86%85%E9%95%9C%E5%83%8F%E6%BA%90/ /etc/apt/…

插入排序:一种简单而有效的排序算法

插入排序:一种简单而有效的排序算法 一、什么是插入排序?二、插入排序的步骤三、插入排序的C语言实现四、插入排序的性能分析五、插入排序的优化六、总结 在我们日常生活和工作中,排序是一种非常常见的操作。比如,我们可能需要对一…