【Hadoop大数据技术】——MapReduce分布式计算框架(学习笔记)

📖 前言:MapReduce是Hadoop系统核心组件之一,它是一种可用于大数据并行处理的计算模型、框架和平台,主要解决海量数据的计算问题,是目前分布式计算模型中应用较为广泛的一种。

在这里插入图片描述


目录

  • 🕒 1. MapReduce概述
    • 🕘 1.1 核心思想:分而治之
    • 🕘 1.2 编程模型
    • 🕘 1.3 经典实例——词频统计
  • 🕒 2. MapReduce工作原理
    • 🕘 2.1 工作过程
    • 🕘 2.2 MapTask
    • 🕘 2.3 ReduceTask
    • 🕘 2.4 Shuffle
      • 🕤 2.4.1 MapTask中的Shuffle
      • 🕤 2.4.2 ReduceTask中的Shuffle
  • 🕒 3. MapReduce编程组件
    • 🕘 3.1 InputFormat组件
    • 🕘 3.2 OutputFormat组件
    • 🕘 3.3 Combiner组件
    • 🕘 3.4 Mapper组件
    • 🕘 3.5 Reducer组件
    • 🕘 3.6 Partitioner组件
  • 🕒 4. MapReduce运行模式
  • 🕒 5. MapReduce经典案例
  • 🕒 6. 课后习题

🕒 1. MapReduce概述

🕘 1.1 核心思想:分而治之

使用MapReduce操作海量数据时,每个MapReduce程序被初始化为一个工作任务,每个工作任务可以分为Map和Reduce两个阶段。

  • Map阶段:负责将工作任务分解为若干个子任务来并行处理,这些子任务相互独立,可以单独被执行。
  • Reduce阶段:负责将Map过程处理完的子任务结果合并,从而得到工作任务的最终结果。

在这里插入图片描述

MapReduce就是“任务的分解与结果的汇总”。即使用户不懂分布式计算框架的内部运行机制,但是只要能用Map和Reduce思想描述清楚要处理的问题,就能轻松地在Hadoop集群上实现分布式计算功能。

🕘 1.2 编程模型

MapReduce是一种编程模型,用于处理大规模数据集的并行运算。使用MapReduce执行计算任务的时候,每个任务的执行过程都会被分为两个阶段,分别是Map和Reduce,其中Map阶段用于对原始数据进行处理,Reduce阶段用于对Map阶段的结果进行汇总,得到最终结果。

在这里插入图片描述

🕘 1.3 经典实例——词频统计

假设有两个文本文件test1.txt和文件test2.txt。

文件test1.txt的内容

Hello World
Hello Hadoop
Hello itcast

文件test2.txt的内容

Hadoop MapReduce
MapReduce Spark

使用MapReduce程序统计文件test1.txt和test2.txt中每个单词出现的次数,实现词频统计的流程。

  • 首先,MapReduce通过默认组件TextInputFormat将待处理的数据文件(如text1.txt和text2.txt),把每一行的数据都转变为<key,value>键值对。其中键(Key)是指每行数据的起始偏移量,也就是每行数据开头的字符所在的位置,值(Value)是指文本文件中的每行数据。
  • 其次,调用Map()方法,将单词进行切割并进行计数,输出键值对作为Reduce阶段的输入键值对。
  • 最后,调用Reduce()方法将单词汇总、排序后,通过TextOutputFormat组件输出到结果文件中。

在这里插入图片描述

🕒 2. MapReduce工作原理

🕘 2.1 工作过程

流程:分片、格式化数据源 → 执行MapTask → 执行Shuffle过程 → 执行ReduceTask → 写入文件

在这里插入图片描述

  • 分片(Split)和格式化数据源
    • 分片操作:指将原始数据文件file划分为多个数据块,每个数据块默认是128MB,即block1、block2 和 block3,MapReduce 会为每个数据块创建一个 MapTask,并由该MapTask 运行 map()方法,处理数据块内的每行数据。
    • 格式化操作:将划分好的分片格式化为键值对<key,value>形式的数据,其中,key 代表偏移量,value代表每一行内容。
  • 执行MapTask
    • 每个MapTask都有一个内存缓冲区(大小默认为100MB),键值对经过处理后,会将中间结果暂时写入内存缓冲区。
  • 执行 Shuffle 过程
    • MapReduce 工作过程中,Map 阶段处理的数据传递给 Reduce 阶段的过程叫作 Shuffle。Shuffle会将 MapTask 输出的处理结果数据分发给 ReduceTask,并在分发的过程中,对数据按 key 进行分区和排序。
  • 执行ReduceTask
    • 输入ReduceTask的数据流是<key,{value list}>形式,用户可以自定义reduce()方法进行逻辑处理,最终以<key,value>的形式输出。
  • 写入文件
    • MapReduce 会自动把 ReduceTask 生成的<key,value>传入 OutputFormat 的 write 方法,即以键值对的形式写入指定目录的文件,如 part-0、part-1和 part-2。实现文件的写入操作。

Q:HDFS Block与MapReduce split之间的联系?
A:Block:HDFS中最小的数据存储单位,默认是128M;Split:MapReduce中最小的计算单元,默认与Block一一对应。

🕘 2.2 MapTask

MapTask作为MapReduce工作流程前半部分,它主要经历5个阶段,分别是Read阶段、Map阶段、Collect阶段、Spill阶段和Combiner阶段

在这里插入图片描述

  • Read阶段:通过MapReduce内置的InputSplit组件将读取的文件进行分片处理,将数据块中的数据映射为键值对形式。
  • Map阶段:将Read阶段映射的键值对进行转换,并生成新的键值对。
  • Collect阶段:将Map阶段输出的键值对写入内存缓冲区。
  • Spill阶段:判断内存缓冲区中的数据是否达到指定阈值。
  • Combine阶段:将写入本地磁盘的所有临时文件合并成一个新的文件,对新文件进行归并排序。

🕘 2.3 ReduceTask

ReduceTask的工作过程主要经历了5个阶段,分别是Copy阶段、Merge阶段、Sort阶段、Reduce阶段和Write阶段
在这里插入图片描述

  • Copy阶段:从不同的MapTask复制需要处理的数据,将数据写入内存缓冲区。
  • Merge阶段:对内存和磁盘上的文件进行合并,防止内存使用过多或者磁盘文件过多。
  • Sort阶段:由于各个 MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。
  • Reduce阶段:根据实际应用场景自定义reduce()方法,对Sort阶段输出的键值对进行处理。
  • Write阶段:将Reduce阶段生成的新键值对写入HDFS中。

🕘 2.4 Shuffle

Shuffle是MapReduce的核心,它用来确保每个ReduceTask的输入数据都是按键排序的。它的性能高低直接决定了整个MapReduce程序的性能高低,map和reduce阶段都涉及到了shuffle机制。
在这里插入图片描述

🕤 2.4.1 MapTask中的Shuffle

MapTask中的Shuffle是从Collect阶段到Combine阶段。

  1. MapTask 处理的结果会暂且放入一个内存缓冲区中(该缓冲区默认大小是100MB),当缓冲区快要溢出时(默认达到缓冲区大小的 80%),会在本地文件系统创建一个溢出文件,将该缓冲区的数据写入这个文件。
  2. 写入磁盘之前,线程会根据 ReduceTask 的数量将数据分区,一个 ReduceTask 对应一个分区的数据。这样做的目的是为了避免有些 ReduceTask 分配到大量数据,而有些 ReduceTask 分到很少的数据,甚至没有分到数据的尴尬局面。
  3. 分完数据后,会对每个分区的数据进行排序,如果此时设置了Combiner,将排序后的结果进行 Combine 操作,这样做的目的是尽可能减少执行数据写入磁盘的操作。
  4. 当 MapTask 输出最后一个记录时,可能有很多溢出文件,这时需要将这些文件合并,合并的过程中会不断地进行排序和Combine操作,其目的有两个:一是尽量减少每次写入磁盘的数据量;二是尽量减少下一复制阶段网络传输的数据量。最后合并成了一个已分区且已排序的文件。
  5. 将分区中的数据复制给对应的 ReduceTask 。

🕤 2.4.2 ReduceTask中的Shuffle

ReduceTask中的Shuffle是从Copy阶段到Sort阶段。

  1. Reduce会接收到不同map任务传来的数据,并且每个 map传来的数据都是有序的。如果 Reduce阶段接收的数据量相当小,则直接存储在内存中,如果数据量超过了该缓冲区大小的一定比例,则对数据合并后溢写到磁盘中。
  2. 随着溢写文件的增多,后台线程会将它们合并成一个更大的有序的文件,这样做是为了给后面的合并节省时间。
  3. 合并的过程中会产生许多的中间文件(写入磁盘了),但 MapReduce会让写入磁盘的数据尽可能地少,并且最后一次合并的结果并没有写入磁盘,而是直接输入到 reduce 函数,

🕒 3. MapReduce编程组件

🕘 3.1 InputFormat组件

主要用于描述输入数据的格式,它提供两个功能,分别是数据切分和为Mapper提供输入数据。

🕘 3.2 OutputFormat组件

OutputFormat是一个用于描述MapReduce程序输出格式和规范的抽象类。

🕘 3.3 Combiner组件

Combiner组件的作用就是对Map阶段的输出的重复数据先做一次合并计算,然后把新的(key,value)作为Reduce阶段的输入。

🕘 3.4 Mapper组件

Hadoop提供的Mapper类是实现Map任务的一个抽象基类,该基类提供了一个map()方法。

🕘 3.5 Reducer组件

Map过程输出的键值对,将由Reducer组件进行合并处理,最终的某种形式的结果输出。

🕘 3.6 Partitioner组件

Partitioner组件可以让Map对Key进行分区,从而可以根据不同的key分发到不同的Reduce中去处理,其目的就是将 key 均匀分布在 ReduceTask 上

🕒 4. MapReduce运行模式

本地运行模式:在当前的开发环境模拟MapReduce执行环境,处理的数据及输出结果在本地操作系统。

集群运行模式:把MapReduce程序打成一个Jar包,提交至Yarn集群上去运行任务。由于Yarn集群负责资源管理和任务调度,程序会被框架分发到集群中的节点上并发的执行,因此处理的数据和输出结果都在HDFS文件系统中。

🕒 5. MapReduce经典案例

详见下文:

🔎 MapReduce经典案例实战(倒排索引、数据去重、TopN)

🕒 6. 课后习题

判断题:
1、Map阶段处理数据时,是按照key的哈希值与 ReduceTask 数量取模进行分区的规则。 ()
2、分区数量是 ReduceTask 的数量。 ()
3、在 MapReduce程序中,必须开发 Map和Reduce相应的业务代码才能执行程序。()

答案:1.√ 、2.√ 、3.×


OK,以上就是本期知识点“MapReduce分布式计算框架”的知识啦~~ ,感谢友友们的阅读。后续还会继续更新,欢迎持续关注哟📌~
💫如果有错误❌,欢迎批评指正呀👀~让我们一起相互进步🚀
🎉如果觉得收获满满,可以点点赞👍支持一下哟~

❗ 转载请注明出处
作者:HinsCoder
博客链接:🔎 作者博客主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2869346.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

JVM学习-JMM

目录 1.什么是JMM 2.JMM怎样保障数据的可见性、有序性、原子性 2.1保证原子性 2.2.保证可见性 2.3保证有序性 3.CAS 3.1乐观锁和悲观锁 3.2 CAS介绍 4.重量级锁的自旋优化 1.什么是JMM JMM即Java内存模型 &#xff0c;定义了一套在多线程读写共享数据&#xff08;如数组、成…

贪心算法(算法竞赛、蓝桥杯)--糖果传递

1、B站视频链接&#xff1a;A31 贪心算法 P2512 [HAOI2008] 糖果传递_哔哩哔哩_bilibili 题目链接&#xff1a;[HAOI2008] 糖果传递 - 洛谷 #include <bits/stdc.h> using namespace std; const int N1000005; int n,a[N],c[N]; long long b,ans;int main(){scanf(&quo…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:UIExtensionComponent (系统接口))

UIExtensionComponent用于支持在本页面内嵌入其他应用提供的UI。展示的内容在另外一个进程中运行&#xff0c;本应用并不参与其中的布局和渲染。 通常用于有进程隔离诉求的模块化开发场景。 说明&#xff1a; 该组件从API Version 10开始支持。后续版本如有新增内容&#xff0…

QT C++ QButtonGroup应用

//QT 中&#xff0c;按钮数量比较少&#xff0c;可以分别用各按钮的信号和槽处理。 //当按钮数量较多时&#xff0c;用QButtonGroup可以实现共用一个槽函数&#xff0c;批量处理&#xff0c;减少垃圾代码&#xff0c; //减少出错。 //开发平台&#xff1a;win10QT6.2.4 MSVC…

Xilinx FPGA模式配置

Xilinx FPGA模式配置 Xilinx UltraScale FPGA有7种配置模式&#xff0c;由模式输入引脚M[2:0]决定。七种模式如图1所示。 图1 7种配置模式 7种模式可分为3大类&#xff0c; 1、JTAG模式&#xff08;可归为从模式&#xff09;&#xff1b; 2、主模式&#xff1b; 3、从模式…

基于SpringBoot SSM vue办公自动化系统

基于SpringBoot SSM vue办公自动化系统 系统功能 登录 个人中心 请假信息管理 考勤信息管理 出差信息管理 行政领导管理 代办事项管理 文档管理 公告信息管理 企业信息管理 会议室信息管理 资产设备管理 员工信息管理 开发环境和技术 开发语言&#xff1a;Java 使用框架: S…

OpenCV4.9.0开源计算机视觉库在 Linux 中安装

返回目录&#xff1a;OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇&#xff1a;OpenCV 环境变量参考 下一篇&#xff1a;将OpenCV与gcc和CMake结合使用 引言&#xff1a; OpenCV是一个开源的计算机视觉库&#xff0c;由英特尔公司所赞助。它是一个跨…

【LeetCode热题100】146. LRU 缓存(链表)

一.题目要求 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类&#xff1a; LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存int get(int key) 如果关键字 key 存在于缓存中&#xff0c;则返回关键字的值&#xff0c…

wsl or 虚拟机 安装

1.wsl2安装 WSL全称Windows Subsystem for Linux&#xff0c;是微软开发的适用于Linux的Windows子系统 如今已经有两代了&#xff1a; 所以用的多的还是wsl2。 安装前需要先去设置启用或关闭Windows功能&#xff1a; 打开适用于linux的子系统和虚拟机平台。 Microsoft Store里…

matlab simulink 工业现场漆包机烘炉模糊PID控制算法

1、内容简介 略 70-可以交流、咨询、答疑 2、内容说明 matlab simulink 工业现场漆包机烘炉模糊PID控制算法 第五章 控制算法仿真与分析 在第二章系统分析结合工业现场漆包机烘炉数学模型详细分析模糊PID控制算法以及解耦控制算法的优缺点、实现原理&#xff0c;为本章算法…

Jmeter---分布式

分布式&#xff1a;多台机协作&#xff0c;以集群的方式完成测试任务&#xff0c;可以提高测试效率。 分布式架构&#xff1a;控制机&#xff08;分发任务&#xff09;与多台执行机&#xff08;执行任务&#xff09; 环境搭建&#xff1a; 不同的测试机上安装 Jmeter 配置基…

Acwing-基础算法课笔记之动态规划(线性DP)

Acwing-基础算法课笔记之动态规划&#xff08;线性DP&#xff09; 一、数字三角形1、概述2、闫氏dp分析法代码示例 二、最长上升子序列1、概述2、闫氏dp分析法3、过程模拟4、代码演示 三、最长上升子序列强化版1、概述2、代码示例 四、最长公共子序列&#xff08;LCS&#xff0…

FFmpeg查看所有支持的编码/解码器/封装/解封装/媒体格式/滤镜

查看所有支持的编码器与解码器 ffmpeg -codecs 只查看所有编码器: ffmpeg -encoders 只查看所有解码器: ffmpeg -decoders 只查看H264编码器: ffmpeg -h encoderh264 只查看H264解码器: ffmpeg -h decoderh264 查看所有支持的封装: ffmpeg -muxers 查看所有支持的解封装…

三.使用java的API文档

在Java中&#xff0c;API是指“应用程序接口”&#xff08;Application Programming Interface&#xff09;。Java API是Java编程语言中提供的类和接口的集合&#xff0c;用于开发各种类型的应用程序。类比C的STL&#xff08;标准模板库&#xff09;。 通俗理解就当做些封装好…

Spark-Scala语言实战(1)

在之前的文章中&#xff0c;我们学习了如何在Linux安装Spark以及Scala&#xff0c;想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 Spark及Scala的安装https:/…

如何在Windows11上安装WSL和Linux子系统以及搭建Docker环境

今天给大家介绍一下如何在Windows11上安装Docker 打开控制面板&#xff1a; 打开程序&#xff1a; 打开启用或关闭Windows功能。 勾选Linux子系统&#xff1a; 此时&#xff0c;可能需要重启电脑。 以管理员身份打开PowerShell执行&#xff1a; bcdedit /set hyperv…

C语言学习过程总结(18)——指针(6)

一、数组指针变量 在上一节中我们提到了&#xff0c;指针数组的存放指针的数组&#xff0c;那数组指针变量是什么呢&#xff1f; 显而易见&#xff0c;数组指针变量是指针 同样类比整型指针变量和字符指针变量里面分别存放的是整型变量地址和字符变量地址&#xff0c;我们可以…

layui table列表重载后保持进度条位置不变

使用layui的table表格组件时&#xff0c;当我们操作了某行的修改后&#xff0c;刷新了页面&#xff0c;进度条则跳回到最上面。 除了layui高版本应该内置有方法解决了此问题&#xff0c;但是低版本需要另外想办法解决。 具体解决方式如下&#xff1a; 1.在编辑操作成功前&am…

redis中List和hash数据类型

list类型是用来存储多个有序的字符串的&#xff0c;列表当中的每一个字符看做一个元素&#xff0c;一个列表当中可以存储一个或者多个元素&#xff0c;redis的list支持存储2^32-1个元素。redis可以从列表的两端进行插入&#xff08;pubsh&#xff09;和弹出&#xff08;pop&…

springboot多模块下swaggar界面出现异常(Knife4j文档请求异常)或者界面不报错但是没有显示任何信息

继上一篇博文&#xff0c;我们解决了多模块下扫描不到子模块的原因,建议先看上一个博客了解项目结构&#xff1a; springboot 多模块启动报错Field XXX required a bean of type XXX that could not be found. 接下来我们来解决swaggar异常的原因&#xff0c;我们成功启动项目…