【论文笔记】An Effective Adversarial Attack on Person Re-Identification ...

原文标题(文章标题处有字数限制):
《An Effective Adversarial Attack on Person Re-Identification in Video Surveillance via Dispersion Reduction》

Abstract

通过减少神经网络内部特征图的分散性攻击reid模型。

erbloo/Dispersion_reduction (github.com)

1 Introduction

采用“分散减少”(Dispersion Reduction)的攻击方法,通过内部特征图的对比度来实现的黑盒攻击。

3 Proposed Approach

3.1 Notation

x r e a l x^{real} xreal表示原始查询图像, f ( ⋅ ) f(\cdot) f()表示深度神经网络分类器,第 k k k层的输出特征图为 F \mathfrak{F} F,其中第一次迭代时 F = f ( x r e a l ) ∣ k \mathfrak{F}=f(x^{real})|_k F=f(xreal)k。对于后面的每一次迭代,计算色散(用 g ( ⋅ ) g(\cdot) g()表示),色散的梯度为 ∇ x r e a l g ( F k ) \nabla_{x^{real}} g(\mathfrak{F}_k) xrealg(Fk),用来更新对抗样本 x a d v x^{adv} xadv

3.2 Dispersion Reduction

将Person ReID模型视为黑匣子进行处理和攻击需要一种可高度转移且能够有效攻击不同训练数据集和模型架构的方法。
大多数现有的攻击方法依赖于特定的任务的损失函数,这极大限制了它们跨任务和不同网络模型的可转移性。

分散减少(DR)具有良好的可转移性,在跨任务攻击场景中取得了成功。DR采用公开可用的分类网络作为代理源模型,并攻击用于不同计算机视觉任务的模型,例如对象检测,语义分割和云API应用程序。

DR是黑盒攻击。

传统的黑盒攻击建立一个源模型作为代理,其输入与目标模型生成的标签,而不是真实标签,让源模型来模仿目标行为。

本文提出的DR攻击不依赖于标签系统或特定的任务损失函数,仅访问模型的顶部。
需要源模型,但是不需要按照目标模型进行训练。
DR攻击具有很强的可转移性,预训练的公共模型可以简单地充当源模型。
![[Pasted image 20240301153300.png]]

图1:DR攻击减少了内部特征图的分散性。该对抗性样本是通过攻击VGG16模型的conv3.3层(减少分散性)生成的。与原始图像特征图相比,这也会导致后续层的特征图失真。

还可以分析攻击VGG16网络时针对不同的卷积层的攻击效果。

![[Pasted image 20240301153542.png]]

图2:攻击VGG16不同的层时的效果。攻击中间的层会导致掉点更明显。中间层的标准差的下降也远大于顶层和底层。

DR攻击可以用下面的优化问题定义:
min ⁡ x g ( f ( x a d v , θ ) ) s . t . ∣ ∣ x a d v − x r e a l ∣ ∣ ∞ ≤ ϵ (6) \begin{aligned} \min_x g(f(x^{adv},\theta)) \\ s.t. ||x^{adv}-x^{real}||_\infty\leq\epsilon\tag{6} \end{aligned} xming(f(xadv,θ))s.t.∣∣xadvxrealϵ(6)
其中 f ( ⋅ ) f(\cdot) f()是深度神经网络的分类器, θ \theta θ表示网络参数, g ( ⋅ ) g(\cdot) g()计算分散度。

提出的DR通过采取迭代步骤,通过减少 k k k层中间的特征图的分散度来创建对抗性示例。

离散度描述了分布被拉伸或压缩的程度,并且可以有不同的离散度度量,如方差、标准差、基尼系数。

简单起见使用标准差作为分散度度量。

给定任何特征图,DR沿着降低标准差的方向,迭代地向 x r e a l x^{real} xreal添加噪声,通过裁剪为 x ± ϵ x±\epsilon x±ϵ,将其映射到 x r e a l x^{real} xreal附近。令第 k k k层的特征图为 F = f ( x t a d v ) ∣ k \mathfrak{F}=f(x_t^{adv})|_k F=f(xtadv)k,DR攻击遵循下列等式:
x t + 1 a d v = x t a d v − ∇ x a d v g ( F k ) = x t a d v − d g ( t ) d t ⋅ d f ( x t a d v ∣ k ) d x a d v (7) \begin{aligned} x_{t+1}^{adv}&=x_t^{adv}-\nabla_{x^{adv}}g(\mathfrak{F}_k)\\ &=x_t^{adv}-\frac{dg(t)}{dt}\cdot\frac{df(x_t^{adv}|_k)}{dx^{adv}}\tag{7} \end{aligned} xt+1adv=xtadvxadvg(Fk)=xtadvdtdg(t)dxadvdf(xtadvk)(7)

算法1:Dispersion Reduction Attack

输入:分类器 f f f,真实图像 x r e a l x^{real} xreal,第 k k k层的特征图,扰动 ϵ \epsilon ϵ,迭代次数 T T T,学习率 l l l
输出:对抗性样本 x a d v x^{adv} xadv,使得 ∣ ∣ x a d v − x r e a l ∣ ∣ ∞ ≤ ϵ ||x^{adv}-x^{real}||_\infty\leq\epsilon ∣∣xadvxrealϵ

  • x 0 a d v ← x r e a l x_0^{adv}\leftarrow x_{real} x0advxreal
  • 对于每次迭代:
    • F k = f ( x t a d v ) ∣ k \mathfrak{F}_k=f(x_t^{adv})|_k Fk=f(xtadv)k
    • 计算标准差 g ( F k ) g(\mathfrak{F}_k) g(Fk)
    • 计算梯度 ∇ x r e a l g ( F k ) \nabla_{x^{real}} g(\mathfrak{F}_k) xrealg(Fk)
    • 更新 x a d v x^{adv} xadv x t a d v = x t a d v − Adam ( ∇ x r e a l g ( F k ) , l ) x_t^{adv}=x_t^{adv}-\text{Adam}(\nabla_{x^{real}} g(\mathfrak{F}_k), l) xtadv=xtadvAdam(xrealg(Fk),l)
    • x t a d v x_t^{adv} xtadv移动到 x r e a l x^{real} xreal附近: x t + 1 a d v = clip ( x t a d v , x r e a l − ϵ , x r e a l + ϵ ) x_{t+1}^{adv}=\text{clip}(x_t^{adv},x^{real}-\epsilon,x^{real}+\epsilon) xt+1adv=clip(xtadv,xrealϵ,xreal+ϵ)
  • 返回 x t + 1 a d v x_{t+1}^{adv} xt+1adv

3.3 Victim ReID Models and Implementation Details of Attacks

[68]layumi. Dg-Net. Accessed: Oct. 30, 2019. [Online]. Available: https://github.com/NVlabs/DG-Net
[69] michuanhaohao. Alignedreid. Accessed: Oct. 30, 2019. [Online]. Available: https://github.com/michuanhaohao/AlignedReID
[70] AI-NERC-NUPT. Plr-Osnet. Accessed: Oct. 30, 2019. [Online]. Available: https://github.com/AI-NERC-NUPT/PLR-OSNet
训练时,图像被放缩至256x128,将小批量大小从16降至4,来减小GPU内存开销。

4 Experiments, Results and Discussion

使用了3个SOTA ReID模型作为受害模型,使用DR攻击,在4个数据集上进行攻击表现评估。
![[Pasted image 20240301200901.png]]
表1:受害模型在攻击前和攻击后的mAP,在不同的数据集上的表现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2821727.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【论文阅读-基于VilLBERT方法的导航】Vison-Language Navigation 视觉语言导航(2)

文章目录 1. 【2023ICCV】Learning Vision-and-Language Navigation from YouTube Videos摘要和结论引言Building VLN Dataset from YouTube Videos模型框架实验 2. 【2021ICCV】Airbert: In-domain Pretraining for Vision-and-Language Navigation摘要和结论引言BnB DatasetA…

爬取某牙视频

爬取页面链接:游戏视频_游戏攻略_虎牙视频 爬取步骤:点进去一个视频播放,查看media看有没有视频,发现没有。在xhr中发现有许多ts文件,但这种不是很长的视频一般都有直接的播放链接,所以目标还是找直接的链…

逻辑漏洞(pikachu)

#水平,垂直越权,未授权访问 通过个更换某个id之类的身份标识,从而使A账号获取(修改、删除)B账号数据 使用低权限身份的账号,发送高权限账号才能有的请求,获得其高权限操作 通过删除请求中的认…

爱普生的SG2016系列高频,低相位抖动spxo样品

精工爱普生公司(TSE: 6724,“爱普生”)已经开始发货样品的新系列简单封装晶体振荡器(SPXO)与差分输出1。该系列包括SG2016EGN、SG2016EHN、SG2016VGN和SG2016VHN。它们在基本模式下都具有低相位抖动,并且采用尺寸为2.0 x 1.6 mm的小封装,高度…

【兔子机器人】五连杆运动学解算与VMC(virtual model control)

VMC (virtual model control,虚拟模型控制) 是一种直觉控制方式,其关键是在每个需要控制的自由度上构造恰当的虚拟构件以产生合适的虚拟力。虚拟力不是实际执行机构的作用力或力矩,而是通过执行机构的作用经过机构转换而成。对于一些控制问题…

云游戏:畅享3A游戏大作的全新时代

在科技飞速发展的今天,云游戏以其独特的魅力正深刻改变着游戏的玩法方式。无需昂贵硬件,突破设备限制畅玩3A大作,云游戏为玩家们带来了前所未有的游戏乐趣。本文将深入探讨云游戏的核心优势,为你呈现畅玩游戏的全新时代。 1. 无硬…

Go 互斥锁的实现原理?

Go sync包提供了两种锁类型:互斥锁sync.Mutex 和 读写互斥锁sync.RWMutex,都属于悲观锁。 概念 Mutex是互斥锁,当一个 goroutine 获得了锁后,其他 goroutine 不能获取锁(只能存在一个写者或读者,不能同时…

JVM内存回收算法

1.1 引用计数法 每个对象创建的时候,会分配一个引用计数器,当这个对象被引用的时候计数器就加1,当不被引用或者引用失效的时候计数器就会减1。任何时候,对象的引用计数器值为0就说明这个对象不被使用了,就认为是“垃圾…

从8.8到9.9,涨价的库迪还能守住牌局吗?

作者 | 辰纹 来源 | 洞见新研社 历经超半年的9.9元活动后,瑞幸不仅牢牢守稳盈利态势,还一举创造了新的神话——中国地区年收入首超星巴克。 根据瑞幸咖啡发布的截至12月31日的2023年第四季度及全年财报。第四季度,瑞幸咖啡净营收为70.6亿元…

【VTKExamples::PolyData】第四十一期 PointLocator

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 前言 本文分享VTK样例PointLocator,并解析接口vtkPointLocator,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U^)ノ~YO 1. PointLocator …

ubuntu16.04安装Mysql8.0.25

更换数据源(阿里云) sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak sudo vi /etc/apt/sources.listdeb http://mirrors.aliyun.com/ubuntu/ xenial main multiverse restricted universe deb http://mirrors.aliyun.com/ubuntu/ xenial-backports main multiverse…

第四十三天| 1049. 最后一块石头的重量 II、494. 目标和、474.一和零

01背包问题 Leetcode 1049. 最后一块石头的重量 II 题目链接:1049 最后一块石头的重量 II 题干:有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。 每一回合,从中选出任意两块石头,然后将…

Harbor高可用(haproxy和keepalived)

Harbor高可用(haproxy和keepalived) 文章目录 Harbor高可用(haproxy和keepalived)1.Harbor高可用集群部署架构1.1 主机初始化1.1.1 设置网卡名和ip地址1.1.2 设置主机名1.1.3 配置镜像源1.1.4 关闭防火墙1.1.5 禁用SELinux1.1.6 设…

Typora快捷键设置详细教程(内附每个步骤详细截图)

😎 作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主、前后端开发、人工智能研究生。公粽号:程序员洲洲。 🎈 本文专栏:本文…

探秘Python的Pipeline魔法

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站AI学习网站。 目录 前言 什么是Pipeline? Pipeline的基本用法 Pipeline的高级用法 1. 动态调参 2. 并行处理 3. 多输出 …

第四十七回 一丈青单捉王矮虎 宋公明二打祝家庄-强大而灵活的python装饰器

四面全是埋伏,宋江和众人一直绕圈跑不出去。正在慌乱之时,石秀及时赶到,教大家碰到白杨树就转弯走。走了一段时间,发现围的人越来越多,原来祝家庄以灯笼指挥号令。花荣一箭射下来红灯龙,伏兵自己就乱起来了…

教你快速认识Java中的继承和多态

目录 继承 继承的概念 继承的语法 父类成员访问 在子类方法中或者通过子类对象访问父类成员变量时: 在子类方法中或者通过子类对象访问父类成员方法时: super关键字 子类构造方法: 代码块执行顺序: 多态 多态的实现条件 重写 重…

NFTScan NFT API 在 Web3 钱包追踪器上的开发应用

Web3 钱包追踪器是通过整合区块链数据 API,为加密资产投资者提供全面的钱包分析和追踪工具。用户可以利用钱包追踪器跟踪特定钱包地址的资产总额和交易情况,分析历史交易发现交易趋势,设置资产价格警报,生成钱包报告,同…

应用层DDoS防护:理解、必要性与实现策略

一、应用层简介 应用层,也称作第七层,是OSI(开放系统互联)模型中的最高层。在这一层,数据以特定的应用程序协议格式进行传输,如HTTP、FTP、SMTP等。应用层的主要职责是为用户提供网络服务,如文…

kotlin单例模式,4年小Android的心路历程

一、Java基础 我知道大家一定有很久都没有注意到这个点了,平时的工作应该也很少涉及到这些底层知识吧,但是这些东西很重要。如果是想要跳槽加薪或者是应对即将到来的面试,这些都是不可忽视的知识。 在这一点里,需要重视的点有&am…