pytorch --反向传播和优化器

1. 反向传播

计算当前张量的梯度

Tensor.backward(gradient=None, retain_graph=None, create_graph=False, inputs=None)

计算当前张量相对于图中叶子节点的梯度。

使用反向传播,每个节点的梯度,根据梯度进行参数优化,最后使得损失最小化

代码:

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10('data',train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)class Tudui(nn.Module):def __init__(self):super().__init__()# 另一种写法self.model1 = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(2),nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(2),nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(in_features=1024, out_features=64),nn.Linear(in_features=64, out_features=10))def forward(self,x):# sequential方式x = self.model1(x)return x
loss = nn.CrossEntropyLoss()
tudui = Tudui()
for data in dataloader:imgs,target = dataoutputs= tudui(imgs)result_loss = loss(outputs,target)result_loss.backward() # 梯度print(result_loss)

2.优化器 (以随机梯度下降算法为例)
将上一步的梯度清零
params ,lr(学习率)
随机梯度下降SGD
torch.optim.SGD(params,
lr=,
momentum=0, dampening=0, weight_decay=0, nesterov=False, *, maximize=False, foreach=None, differentiable=False)

代码:

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10('data',train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)class Tudui(nn.Module):def __init__(self):super().__init__()# 另一种写法self.model1 = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(2),nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(2),nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(in_features=1024, out_features=64),nn.Linear(in_features=64, out_features=10))def forward(self,x):# sequential方式x = self.model1(x)return x
loss = nn.CrossEntropyLoss()
tudui = Tudui()
optim = torch.optim.SGD(tudui.parameters(),lr=0.01) # params,lr
for epoch in range(5):# 在整个数据集上训练5次running_loss = 0#对数据进行一轮学习for data in dataloader:imgs,target = dataoutputs= tudui(imgs)result_loss = loss(outputs,target)optim.zero_grad() # 将上一步的梯度清零result_loss.backward() # 梯度optim.step() # 根据梯度修改参数# print(result_loss)running_loss = running_loss + result_lossprint(running_loss)

输出
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2813382.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【MATLAB】小波 MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 小波MFE_SVM_LSTM神经网络时序预测算法是一种结合了小波变换、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LST…

2024年食品饮料市场格局预测-2024年食品饮料行业未来发展趋势

娃哈哈创始人、董事长宗庆后离世,未来将由其女宗馥莉正式接班。 目前,娃哈哈电商的品类结构如下:饮料市场占比整体第一,占比超过55%,代表性产品为“AD钙奶”;其次是饮用水,占比在20%左右&#…

python 基础知识点(蓝桥杯python科目个人复习计划51)

今日复习计划:做复习题 例题1:大石头的搬运工 问题描述: 在一款名为“大石头的搬运工”的游戏中,玩家需要 操作一排n堆石头,进行n - 1轮游戏。 每一轮,玩家可以选择一堆石头,并将其移动到任…

mapbox高德地图与相机

mapbox高德地图与相机 本案例使用Mapbox GL JavaScript库创建高德地图。 演示效果引入 CDN 链接地图显示 创建地图实例定义地图数据源配置地图图层 设置地图样式实现代码 1. 演示效果 2. 引入 CDN 链接 <script src"https://api.mapbox.com/mapbox-gl-js/v2.12.0/mapb…

YOLOv9-Openvino和ONNXRuntime推理【CPU】

1 环境&#xff1a; CPU&#xff1a;i5-12500 Python&#xff1a;3.8.18 2 安装Openvino和ONNXRuntime 2.1 Openvino简介 Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包&#xff0c;主要用于对深度推理做优化。 Openvino内部集成了Opencv、Tens…

SQL注入漏洞解析--less-46

我们先看一下46关 他说让我们先输入一个数字作为sort,那我们就先输入数字看一下 当我们分别输入1&#xff0c;2&#xff0c;3可以看到按照字母顺序进行了排序&#xff0c;所以它便是一个使用了order by语句进行排序的查询的一种查询输出方式 当输入时出现报错提示&#xff0c;说…

编曲学习:和声小调 终止式 离调和弦 转调应用

和声小调 音阶 大调音程关系排列:全 全 半 全 全 全 半 小调音程关系排列:全 半 全 全 半 全 全 C大调音阶: 1 2 3 4 5 6 7 1 C小调音阶: 1 2 b3 4 5 b6 b7 1 C大调基本音级构成的和弦: Cmaj7 Dmin7 Emin7 Fmaj7 G7 Amin7 Bm7-5 C小调基本音级构成的和弦: Cmin7 D…

【书籍分享 • 第三期】虚拟化与容器技术

文章目录 一、本书内容二、读者对象三、编辑推荐四、前言4.1 云计算技术的发展4.2 KVM、Docker4.3 本书内容简介4.4 作者简介 五、粉丝福利 一、本书内容 《虚拟化与容器技术》通过深入浅出的方式介绍KVM虚拟化技术与Docker容器技术的概念、原理及实现方法&#xff0c;内容包括…

Linux中如何在创建子线程的时候设置为分离属性

#include<stdio.h> #include<stdlib.h> #include<string.h> #include<sys/types.h> #include<unistd.h> #include <pthread.h> void *mythread(void *arg) {printf("id[%ld]\n",pthread_self()); } int main() { //定义pthread_…

Vue <script setup>

目录 基本语法 顶层的绑定会被暴露给模板 响应式 使用组件 动态组件 递归组件 命名空间组件 使用自定义指令 defineProps() 和 defineEmits() 针对类型的 props/emit 声明 使用类型声明时的默认 props 值 顶层 await 限制 <script setup> 是在单文件组件 (S…

网络原理——HTTPS

HTTPS是 在HTTP的基础上&#xff0c;引入了一个加密层&#xff08;SSL)。 1. 为什么需要HTTPS 在我们使用浏览器下载一些软件时&#xff0c;相信大家都遇到过这种情况&#xff1a;明明这个链接显示的是下载A软件&#xff0c;点击下载时就变成了B软件&#xff0c;这种情况是运…

北斗卫星赋能,宠物定位新篇章—追踪宠物,不再是难题

北斗卫星赋能&#xff0c;宠物定位新篇章—追踪宠物&#xff0c;不再是难题 随着社会的快速发展与科技的不断进步&#xff0c;人们的生活方式也在不断改变。宠物已经成为越来越多家庭的重要成员&#xff0c;在这个宠爱宠物的时代&#xff0c;如何确保宠物的安全&#xff0c;特…

javaEE图书馆自习室订座系统信用springmvc+springboot+mybatis

研究的内容是设计和实现图书馆自习室系统&#xff0c;便捷广大师生对自习室的使用&#xff0c;协助图书馆自习室管理。在设计过程中&#xff0c;系统的用户角色和权限分配如下&#xff1a; &#xff08;1&#xff09;馆长 用户管理&#xff1a;拥有自习室管理员、普通用户的所有…

什么是气象站?

气象站&#xff0c;这个名字听起来可能有些陌生&#xff0c;但我们的生活却与之息息相关。 一、气象站的定义与功能 气象站是一个专门用于观测和记录天气现象的设施。通过收集各种气象数据&#xff0c;如温度、湿度、风速、风向、气压、降水量等&#xff0c;气象站为天气预报、…

10 Redis之SB整合Redis+ 高并发问题 + 分布式锁

7. SB整合Redis Spring Boot 中可以直接使用 Jedis 实现对 Redis 的操作&#xff0c;但一般不这样用&#xff0c;而是使用 Redis操作模板 RedisTemplate 类的实例来操作 Redis。 RedisTemplate 类是一个对 Redis 进行操作的模板类。该模板类中具有很多方法&#xff0c;这些方…

计算机设计大赛 深度学习实现行人重识别 - python opencv yolo Reid

文章目录 0 前言1 课题背景2 效果展示3 行人检测4 行人重识别5 其他工具6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习的行人重识别算法研究与实现 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c…

千兆单口(百兆双口)小体积 24PIN 网络变压器 H82409S 特点

Hqst华轩盛(石门盈盛)电子导读&#xff1a;千兆单口&#xff08;百兆双口&#xff09;小体积 24PIN 网络变压器 H82409S 特点 大家好&#xff0c;石门盈盛电子科技有限公司工程盛先生&#xff0c;今天向大家介绍石门盈盛电子科技有限公司的一款优势产品 - 千兆单口&#xff08;…

查看cuda和cudnn版本

查看cuda 打开命令提示符&#xff08;Windows键 R&#xff0c;然后输入cmd并回车&#xff09;。输入nvcc --version或者nvcc -V来获取Cuda的版本信息。 查看cudnn版本 查看Cudnn版本&#xff1a; 进入Cuda安装目录&#xff0c;通常位于C:\Program Files\NVIDIA GPU Computi…

Linux系统---nginx(1)服务

目录 一.Nginx概述 1.定义 2.Nginx模块作用 &#xff08;1&#xff09;main模块 &#xff08;2&#xff09;stream服务模块 &#xff08;3&#xff09;邮件服务模块 &#xff08;4&#xff09;第三方模块 &#xff08;5&#xff09;events模块 &#xff08;6&#xff0…

Mac专用投屏工具AirServer 7.27 for Mac中文版2024最新图文教程

Mac专用投屏工具AirServer 7.27 for Mac中文版是一款适用于Mac的投屏工具&#xff0c;可以将Mac屏幕快速投影到其他设备上&#xff0c;如电视、投影仪、平板等。 Mac专用投屏工具AirServer 7.27 for Mac中文版具有优秀的兼容性&#xff0c;可以与各种设备配合使用。无论是iPhon…