【多线程】volatile 关键字、wait 和 notify方法详解

volatile 、wait 和 notify

  • 🌲volatile关键字
    • 🚩保证内存可见性
    • 🚩volatile 不保证原⼦性
  • 🌳wait 和 notify方法
    • 🚩wait()
    • 🚩notify()
    • 🚩notifyAll()方法
  • ⭕wait 和 sleep 的对比( 面试题)

🌲volatile关键字

🚩保证内存可见性

volatile 修饰的变量, 能够保证 “内存可⻅性”.
在这里插入图片描述
代码在写⼊ volatile 修饰的变量的时候,

• 改变线程⼯作内存中volatile变量副本的值
• 将改变后的副本的值从⼯作内存刷新到主内存

代码在读取 volatile 修饰的变量的时候,

• 从主内存中读取volatile变量的最新值到线程的⼯作内存中
• 从⼯作内存中读取volatile变量的副本

前⾯我们讨论内存可⻅性时说了, 直接访问⼯作内存(实际是 CPU 的寄存器或者 CPU 的缓存), 速度⾮
常快, 但是可能出现数据不⼀致的情况.
加上 volatile , 强制读写内存. 速度是慢了, 但是数据变的更准确了.

代码示例

在这个代码中
• 创建两个线程 t1 和 t2
• t1 中包含⼀个循环, 这个循环以 flag == 0 为循环条件.
• t2 中从键盘读⼊⼀个整数, 并把这个整数赋值给 flag.
• 预期当⽤⼾输⼊⾮ 0 的值的时候, t1 线程结束.

static class Counter {public int flag = 0;
}
public static void main(String[] args) {Counter counter = new Counter();Thread t1 = new Thread(() -> {while (counter.flag == 0) {// do nothing}System.out.println("循环结束!");});Thread t2 = new Thread(() -> {Scanner scanner = new Scanner(System.in);System.out.println("输⼊⼀个整数:");counter.flag = scanner.nextInt();});t1.start();t2.start();
}
// 执⾏效果
// 当⽤⼾输⼊⾮0值时, t1 线程循环不会结束. (这显然是⼀个 bug)

t1 读的是⾃⼰⼯作内存中的内容.
当 t2 对 flag 变量进⾏修改, 此时 t1 感知不到 flag 的变化.

如果给 flag 加上 volatile

static class Counter {public volatile int flag = 0;
}
// 执⾏效果
// 当⽤⼾输⼊⾮0值时, t1 线程循环能够⽴即结束.

🚩volatile 不保证原⼦性

volatile 和 synchronized 有着本质的区别. synchronized 能够保证原⼦性, volatile 保证的是内存可⻅
性.

代码⽰例
这个是最初的演⽰线程安全的代码.
• 给 increase ⽅法去掉 synchronized
• 给 count 加上 volatile 关键字.

static class Counter {volatile public int count = 0;void increase() {count++;}
}
public static void main(String[] args) throws InterruptedException {final Counter counter = new Counter();Thread t1 = new Thread(() -> {for (int i = 0; i < 50000; i++) {counter.increase();}});Thread t2 = new Thread(() -> {for (int i = 0; i < 50000; i++) {counter.increase();}});t1.start();t2.start();t1.join();t2.join();System.out.println(counter.count);
}

此时可以看到, 最终 count 的值仍然⽆法保证是 100000.

🌳wait 和 notify方法

由于线程之间是抢占式执⾏的, 因此线程之间执⾏的先后顺序难以预知.
但是实际开发中有时候我们希望合理的协调多个线程之间的执⾏先后顺序.
在这里插入图片描述
球场上的每个运动员都是独⽴的 “执⾏流” , 可以认为是⼀个 “线程”.
⽽完成⼀个具体的进攻得分动作, 则需要多个运动员相互配合, 按照⼀定的顺序执⾏⼀定的动作, 线程
1 先 “传球” , 线程2 才能 “扣篮”.

完成这个协调⼯作, 主要涉及到三个⽅法
• wait() / wait(long timeout): 让当前线程进⼊等待状态.
• notify() / notifyAll(): 唤醒在当前对象上等待的线程

注意: wait, notify, notifyAll 都是 Object 类的⽅法

🚩wait()

wait 做的事情:
• 使当前执⾏代码的线程进⾏等待. (把线程放到等待队列中)
• 释放当前的锁
• 满⾜⼀定条件时被唤醒, 重新尝试获取这个锁.

wait 要搭配 synchronized 来使⽤. 脱离 synchronized 使⽤ wait 会直接抛出异常.

wait 结束等待的条件:
• 其他线程调⽤该对象的 notify ⽅法.
• wait 等待时间超时 (wait ⽅法提供⼀个带有 timeout 参数的版本, 来指定等待时间).
• 其他线程调⽤该等待线程的 interrupted ⽅法, 导致 wait 抛出 InterruptedException 异常.

代码⽰例: 观察wait()⽅法使⽤

public static void main(String[] args) throws InterruptedException {Object object = new Object();synchronized (object) {System.out.println("等待中");object.wait();System.out.println("等待结束");}
}

这样在执⾏到object.wait()之后就⼀直等待下去,那么程序肯定不能⼀直这么等待下去了。这个时候就
需要使⽤到了另外⼀个⽅法唤醒的⽅法notify()。

🚩notify()

notify ⽅法是唤醒等待的线程.

• ⽅法notify()也要在同步⽅法或同步块中调⽤,该⽅法是⽤来通知那些可能等待该对象的对象锁的其
它线程,对其发出通知notify,并使它们重新获取该对象的对象锁。
• 如果有多个线程等待,则有线程调度器随机挑选出⼀个呈 wait 状态的线程。(并没有 “先来后到”)
• 在notify()⽅法后,当前线程不会⻢上释放该对象锁,要等到执⾏notify()⽅法的线程将程序执⾏
完,也就是退出同步代码块之后才会释放对象锁。

代码⽰例: 使⽤notify()⽅法唤醒线程

• 创建 WaitTask 类, 对应⼀个线程, run 内部循环调⽤ wait.
• 创建 NotifyTask 类, 对应另⼀个线程, 在 run 内部调⽤⼀次 notify
• 注意, WaitTask 和 NotifyTask 内部持有同⼀个 Object locker. WaitTask 和 NotifyTask 要想配合就
需要搭配同⼀个 Object.

static class WaitTask implements Runnable {private Object locker;public WaitTask(Object locker) {this.locker = locker;}@Overridepublic void run() {synchronized (locker) {while (true) {try {System.out.println("wait 开始");locker.wait();System.out.println("wait 结束");} catch (InterruptedException e) {e.printStackTrace();}}}}
}
static class NotifyTask implements Runnable {private Object locker;public NotifyTask(Object locker) {this.locker = locker;}@Overridepublic void run() {synchronized (locker) {System.out.println("notify 开始");locker.notify();System.out.println("notify 结束");}}
}
public static void main(String[] args) throws InterruptedException {Object locker = new Object();Thread t1 = new Thread(new WaitTask(locker));Thread t2 = new Thread(new NotifyTask(locker));t1.start();Thread.sleep(1000);t2.start();
}

🚩notifyAll()方法

notify⽅法只是唤醒某⼀个等待线程. 使⽤notifyAll⽅法可以⼀次唤醒所有的等待线程.
范例:使⽤notifyAll()⽅法唤醒所有等待线程, 在上⾯的代码基础上做出修改.

• 创建 3 个 WaitTask 实例. 1 个 NotifyTask 实例.

static class WaitTask implements Runnable {// 代码不变
}
static class NotifyTask implements Runnable {// 代码不变
}
public static void main(String[] args) throws InterruptedException {Object locker = new Object();Thread t1 = new Thread(new WaitTask(locker));Thread t3 = new Thread(new WaitTask(locker));Thread t4 = new Thread(new WaitTask(locker));Thread t2 = new Thread(new NotifyTask(locker));t1.start();t3.start();t4.start();Thread.sleep(1000);t2.start();
}

• 修改 NotifyTask 中的 run ⽅法, 把 notify 替换成 notifyAll

public void run() {synchronized (locker) {System.out.println("notify 开始");locker.notifyAll();System.out.println("notify 结束");}
}

此时可以看到, 调⽤ notifyAll 能同时唤醒 3 个wait 中的线程

注意: 虽然是同时唤醒 3 个线程, 但是这 3 个线程需要竞争锁. 所以并不是同时执⾏, ⽽仍然是有先有后的执⾏.

理解 notify 和 notifyAll
notify 只唤醒等待队列中的⼀个线程. 其他线程还是乖乖等着
在这里插入图片描述
notifyAll ⼀下全都唤醒, 需要这些线程重新竞争锁
在这里插入图片描述

⭕wait 和 sleep 的对比( 面试题)

其实理论上 wait 和 sleep 完全是没有可⽐性的,因为⼀个是⽤于线程之间的通信的,⼀个是让线程阻
塞⼀段时间,
唯⼀的相同点就是都可以让线程放弃执⾏⼀段时间.

当然为了⾯试的⽬的,我们还是总结下:

  1. wait 需要搭配 synchronized 使⽤. sleep 不需要.
  2. wait 是 Object 的⽅法 sleep 是 Thread 的静态⽅法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2807225.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

中国农业无人机行业市场现状分析与投资前景预测研究报告

全版价格&#xff1a;壹捌零零 报告版本&#xff1a;下单后会更新至最新版本 交货时间&#xff1a;1-2天 第一章农业无人机行业发展综述 第一节农业无人机行业定义及分类 一、农业无人机行业的定义 农业无人机是一种无人驾驶的飞行器来帮助优化农业经营&#xff0c;增加作…

深入理解基于 eBPF 的 C/C++ 内存泄漏分析

对于 C/C 程序员来说&#xff0c;内存泄露问题是一个老生常谈的问题。排查内存泄露的方法有很多&#xff0c;比如使用 valgrind、gdb、asan、tsan 等工具&#xff0c;但是这些工具都有各自的局限性&#xff0c;比如 valgrind 会使程序运行速度变慢&#xff0c;gdb 需要了解代码…

政府采购网有哪些回款方式

政府采购网的回款方式多种多样&#xff0c;具体取决于采购项目的性质、规模以及采购单位与供应商之间的约定。以下是一些常见的政府采购网回款方式&#xff1a; 线上支付&#xff1a;随着电子商务的发展&#xff0c;越来越多的政府采购项目采用线上支付方式。这种方式方便快捷&…

C# 中 SQLite 查询数据库表中字段(列)是否存在的方法

查询SQLite数据库表中字段&#xff08;列&#xff09;存在的方法 使用SQL语句为&#xff1a;PRAGMA table_info([DeviceTrees]); 其中“DeviceTrees”为数据库表的名称。 使用SQLite Expert Professional工具&#xff0c;查看该语句是否起作用&#xff0c;这里使用的版本是…

Python中json模块介绍及学习

简介 json模块是Python标准库中的一个用于处理JSON数据的模块&#xff0c;它提供了一组方法来进行 JSON 数据的解析和生成。JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;常用于数据传输和配置文件。 下面是json模块的一些常…

详解Megatron中的数据混合算法(BlendableDataset)

&#x1f9d1;‍&#x1f4bb; 本文主要讲解Megatron早期版本中的数据混合算法。 目录 1. 数据混合2. 源码解析3. 证明部分&讨论4. 进一步优化 1. 数据混合 在谈源码之前&#xff0c;我们有必要先了解一下Megatron中的数据混合思想。 给定 n n n 个数据集 D 1 , D 2 , …

Flask基础学习3

参考视频&#xff1a;41-【实战】答案列表的渲染_哔哩哔哩_bilibili flask 实现发送短信功能 pip install flask-mail # 安装依赖 我这里用登录的网易邮箱获取的授权码&#xff08;登录QQ邮箱的授权码总是断开收不到邮件&#xff09;&#xff0c; # config # config mail MAI…

十一、Qt数据库操作

一、Sql介绍 Qt Sql模块包含多个类&#xff0c;实现数据库的连接&#xff0c;Sql语句的执行&#xff0c;数据获取与界面显示&#xff0c;数据与界面直接使用Model/View结构。1、使用Sql模块 &#xff08;1&#xff09;工程加入 QT sql&#xff08;2&#xff09;添加头文件 …

第八章:指针

第八章:指针 指针重要性: 数据库–>动态分配内存数据结构–>链表、队列、树、图等操作系统–>改善子程序的效率指针为函数提供修改变量值的手段8.1-地址和指针 变量的地址 计算机中,数据存储在内存中 内存:是内部存储器,由存储单元组成的。内存可划分为若干存储单…

Map集合特点、遍历方式、TreeMap排序及Collections和Arrays

目录 ​编辑 一、集合框架 二、 Map集合 特点 遍历方式 HashMap与Hashtable的区别 TreeMap Collections Arrays 一、集合框架 二、 Map集合 Map集合是一种键值对的集合&#xff0c;其中每个键对应一个值。在Java中&#xff0c;Map接口定义了一种将键映射到值的数据结…

02|Order by与Group by优化

索引顺序依次是 &#xff1a; name,age,position 案例1 EXPLAIN SELECT * FROM employees WHERE name LiLei AND position dev ORDER BY age;分析: 联合索引中只是用到了name字段做等值查询[通过key_len 74可以看出因为name字段的len74]&#xff0c;在这个基础上使用了age进…

halcon中的一维测量

一维测量 像点到点的距离&#xff0c;边缘对的距离等沿着一维方向的测量都属于1D测量范畴。Halocn的一维测量首先构建矩形或者扇形的ROI测量对象&#xff0c;然后在ROI内画出等距离的、长度与ROI宽度一致的、垂直于ROI的轮廓线&#xff08;profile line&#xff09;的等距线。…

VBA实现快速逆透视

实例需求&#xff1a;将工作表中的数据&#xff08;多维度交叉&#xff09;&#xff0c;对日期进行逆透视&#xff0c;转换为下表的格式。 示例代码如下。 Sub UnpivotTable()Dim oSht As WorksheetDim inLastRow As Long, inLastCol As LongDim outLastRow As Long, outCol …

python毕设选题 - 大数据商城人流数据分析与可视化 - python 大数据分析

文章目录 0 前言课题背景分析方法与过程初步分析&#xff1a;总体流程&#xff1a;1.数据探索分析2.数据预处理3.构建模型 总结 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往往达不到…

最简单的基于 FFmpeg 的编码器 - 纯净版(不包含 libavformat)

最简单的基于 FFmpeg 的编码器 - 纯净版&#xff08;不包含 libavformat&#xff09; 最简单的基于 FFmpeg 的视频编码器&#xff08;YUV 编码为 HEVC&#xff08;H.265&#xff09;&#xff09;正文结果工程文件下载 最简单的基于 FFmpeg 的视频编码器&#xff08;YUV 编码为 …

ES坑-创建索引使用_下划线-黑马旅游搜不到

学ES的时候&#xff0c;星级过滤无效 找不到数据。 需要 但是我们在创建的时候使用的是keyword 通过研究发现&#xff0c;我们导入数据的时候应该默认的为starName 我get库时候发现有2个字段 所以通过star_name搜索因为都是空数据搜不到&#xff0c;而starName类型为text所以…

UE蓝图 函数调用(CallFunction)节点和源码

系列文章目录 UE蓝图 Get节点和源码 UE蓝图 Set节点和源码 UE蓝图 Cast节点和源码 UE蓝图 分支(Branch)节点和源码 UE蓝图 入口(FunctionEntry)节点和源码 UE蓝图 返回结果(FunctionResult)节点和源码 UE蓝图 函数调用(CallFunction)节点和源码 文章目录 系列文章目录一、Call…

使用PM2实现高效的应用监控与管理

微信搜索“好朋友乐平”关注公众号。 1. pm2 PM2 是一个流行的进程管理器&#xff0c;用于 Node.js 应用程序。它支持应用程序的负载均衡、自动重启、日志管理、监控以及多环境管理等功能。PM2让开发者能够以守护进程的方式运行和管理 Node.js 应用&#xff0c;即使在应用崩溃…

什么是负载均衡集群?

目录 1、集群是什么&#xff1f; 2、负载均衡集群技术 3、负载均衡集群技术的实现 4、实现效果如图 5、负载均衡分类 6、四层负载均衡&#xff08;基于IP端口的负载均衡&#xff09; 7、七层的负载均衡&#xff08;基于虚拟的URL或主机IP的负载均衡) 8、四层负载与七层…

消息中间件篇之RabbitMQ-消息重复消费

一、导致重复消费的情况 1. 网络抖动。 2. 消费者挂了。 消费者消费消息后&#xff0c;当确认消息还没有发送到MQ时&#xff0c;就发生网络抖动或者消费者宕机。那当消费者恢复后&#xff0c;由于MQ没有收到消息&#xff0c;而且消费者有重试机制&#xff0c;消费者就会再一次消…