【深度学习目标检测】十八、基于深度学习的人脸检测系统-含GUI和源码(python,yolov8)

人脸检测是计算机视觉中的一个重要方向,也是一个和人们生活息息相关的研究方向,因为人脸是人最重要的外貌特征。人脸检测技术的重要性主要体现在以下几个方面:

  1. 人脸识别与安全:人脸检测是人脸识别系统的一个关键部分,是系统实现的前提和基础。在安防监控中,通过人脸检测可以抓拍人脸并将结果上传,与嫌疑犯人脸进行比对,协助公安人员的执法工作。此外,企业还在为考勤系统实施人脸识别技术,以防止时间欺诈并提高员工进出办公室的安全性。
  2. 人机交互与自动化:人脸检测也可以用于人机交互和图像数据库管理,如数码相机使用人脸检测来自动对焦,以及智能业务系统及平台的研发等。
  3. 零售与支付:在零售行业,人脸检测被用来加速盗窃和欺诈调查,以及分析来自众多来源的镜头以识别感兴趣的个人。此外,预计未来几年零售领域将发生巨大变化,全球将推广刷脸支付,这也离不开人脸检测技术的应用。

总之,人脸检测技术在许多领域都有广泛的应用前景,它能够提高人们生活的便利性、安全性和自动化程度。随着技术的不断进步,人脸检测将在更多领域发挥重要作用。

本文介绍了基于深度学习yolov8的洋葱检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

1、安装pytorch

根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。

①GPU版本的pytorch安装

对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):

打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:

②CPU版本pytorch安装

打开pytorch官网,选择CPU版本安装pytorch,如下图:

2、安装yolov8

在命令行使用如下命令安装:

pip install ultralytics

二、数据集准备

WIDER FACE数据集是一个用于面部检测的大规模人脸数据集,由香港中文大学的研究团队创建。该数据集的特点和组成如下:

  1. 规模与内容:该数据集包含了32,203张图片和393,703个人脸实例,涵盖了广泛的场景、姿态和光照条件。
  2. 标注信息:每个实例都有精确的边界框标注和五个面部特征点标注,这为研究者提供了丰富的信息来进行面部检测和相关任务的研究。
  3. 挑战性:WIDER FACE数据集拥有一个挑战性高的评估基准,旨在评估面部检测算法在各种实际场景中的性能。
  4. 数据划分:该数据集以60个事件类别(如交通、节日、游行等)为基础进行划分,每个事件类别中随机选择40%的数据作为训练集,10%作为验证集,50%作为测试集。这种划分方式使得数据集更具实际应用价值。
  5. 难度级别:WIDER FACE数据集为每个子集(训练集、验证集和测试集)都提供了三个级别的检测难度:Easy、Medium和Hard。这有助于研究者了解他们的算法在不同难度级别上的表现。

总的来说,WIDER FACE数据集是一个丰富、多样且具有挑战性的面部检测数据集,为面部检测和相关任务的研究提供了有力的支持。

本文使用的数据集来自widerface数据集,包含12876张训练图片,3226个测试图片,部分图片如下所示:

为了使用yolov8进行训练,需要将数据集转为yolo格式,本文提供转换好的数据集连接:widerface-yolov8数据集

三、模型配置及训练

1、数据集配置文件

创建数据集配置文件widerface.yaml,内容如下(将path路径替换为自己的数据集路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:\DeepLearning\datasets\csdn\widerface_yolo8  # 替换为自己的数据集路径
train: images/train 
val: images/val 
test: images/val  # Classes
names:# 0: normal0: face

2、训练模型

使用如下命令训练模型,数据配置文件路径更改为自己的路径,model根据自己的需要使用yolov8n/s/l/x版本,其他参数根据自己的需要进行设置:

yolo detect train project=widerface name=train exist_ok data=widerface/widerface.yaml model=yolov8n.yaml epochs=100 imgsz=416

3、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=widerface/train/weights/best.pt data=widerface/widerface.yaml

验证的精度如下:

# Ultralytics YOLOv8.1.10 🚀 Python-3.9.18 torch-2.2.0 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
# YOLOv8n summary (fused): 168 layers, 3005843 parameters, 0 gradients, 8.1 GFLOPs
# val: Scanning D:\DeepLearning\datasets\csdn\thsant-wgisd-ab223e5\wgisd_yolov8\labels\test.cache... 58 images, 0 backgrounds, 0 corrupt: 100%|██████████| 58/58 [00:00<?, ?it/ 
#                  Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:06<00:00,  1.70s/it]
#                    all         58        850      0.772      0.714        0.8      0.445
# Speed: 2.7ms preprocess, 8.4ms inference, 0.0ms loss, 8.4ms postprocess per image

四、推理

训练好了模型,可以使用如下代码实现推理,权重路径修改为自己的路径:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')image_path = 'test.jpg'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

五、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图(完整GUI代码可在下方链接下载):

代码下载连接:基于yolov8的人脸检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2806341.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

人工智能 — 特征选择、特征提取、PCA

目录 一、特征选择1、定义2、原因3、做法4、生成过程5、停止条件 二、特征提取三、PCA 算法1、零均值化&#xff08;中心化&#xff09;2、方差3、协方差4、协方差矩阵5、对协方差矩阵求特征值、特征矩阵6、对特征值进行排序7、评价模型8、代码实现9、sklearn 库10、鸢尾花实例…

Flink join详解(含两类API及coGroup、connect详解)

Flink SQL支持对动态表进行复杂而灵活的连接操作。 为了处理不同的场景&#xff0c;需要多种查询语义&#xff0c;因此有几种不同类型的 Join。 默认情况下&#xff0c;joins 的顺序是没有优化的。表的 join 顺序是在 FROM 从句指定的。可以通过把更新频率最低的表放在第一个、…

Python 实现 BRAR 指标计算(情绪指标):股票技术分析的利器系列(11)

Python 实现 BRAR 指标计算&#xff08;情绪指标&#xff09;&#xff1a;股票技术分析的利器系列&#xff08;11&#xff09; 介绍算法公式 代码rolling函数介绍核心代码计算BR计算AR 完整代码 介绍 BRAR 是一种情绪指标&#xff0c;用于衡量特定金融市场中的买卖情绪。它代表…

高考志愿辅助填报系统

高考志愿辅助填报系统 获取源码——》公主号&#xff1a;计算机专业毕设大全

一文搞懂TCP三次握手与四次挥手

什么是TCP协议&#xff1f; TCP&#xff08;Transmission control protocol&#xff09;即传输控制协议&#xff0c;是一种面向连接、可靠的数据传输协议&#xff0c;它是为了在不可靠的互联网上提供可靠的端到端字节流而专门设计的一个传输协议。 面向连接&#xff1a;数据传…

Java智慧工地云综合管理平台SaaS源码 助力工地实现精细化管理

目录 智慧工地系统介绍 1、可视化大屏 2、视频监控 3、Wi-Fi安全教育 4、环境监测 5、高支模监测 6、深基坑监测 7、智能水电监测 8、塔机升降安全监测 智慧工地系统功能模块 1、基础数据管理 2、考勤管理 3、安全隐患管理 4、视频监控 5、塔吊监控 6、升降机监…

泰迪智能科技中职大数据专业建设解决方案

泰迪智能科技基于十余年的数据智能产业实践经验&#xff0c;专注于大数据和人工智能方向&#xff0c;构建“产、岗、课、赛、证、文”融通的特色职业人才培养模式&#xff0c;助力中国职业教育高质量发展。 面相中职学校的大数据岗位群 目前就业市场上&#xff0c;大数据相关…

Python奇幻之旅(从入门到入狱高级篇)——面向对象进阶篇(下)

目录 引言 3. 面向对象高级和应用 3.1. 继承【补充】 3.1.1. mro和c3算法 c3算法 一句话搞定继承关系 3.1.2. py2和py3区别 3.3. 异常处理 3.3.1. 异常细分 3.3.2. 自定义异常&抛出异常 3.3.3. 特殊的finally 3.4. 反射 3.4.1. 一些皆对象 3.4.2. import_modu…

第十四章[面向对象]:14.8:枚举类

一,定义枚举类 1,把一个类定义为枚举类: 只需要让它继承自 enum 模块中的 Enum 类即可。 例如在下面的例子中,Weekday 类继承自 Enum 类, 则表明这是一个枚举类 枚举类的每个成员都由 2 部分组成,分别是 name 和 value, 其中 name 属性值为该枚举值的变量名(如下例中: …

微信小程序 ---- 生命周期

目录 生命周期 1. 小程序运行机制 2. 小程序更新机制 3. 生命周期介绍 4. 应用级别生命周期 5. 页面级别生命周期 6. 生命周期两个细节补充说明 7. 组件生命周期 总结 生命周期 1. 小程序运行机制 冷启动与热启动&#xff1a; 小程序启动可以分为两种情况&#xff0…

flutter插件开发基础教程

前言 虽然现在已经有很多插件了&#xff0c;但是有时候还是需要自己开发一个插件。因此打算学习一下如何开发一个插件。这里只考虑安卓&#xff0c;安卓使用kotlin&#xff0c;kotlin不会也没事&#xff0c;我也不会。 参考项目&#xff1a;https://github.com/TBoyLi/flutte…

【更换yarn的位置】解决yarn和nodejs不在同一盘下产生的某些命令应用失败问题

具体问题我记得是command fail什么error&#xff0c;记不太清楚了&#xff0c;文章主要写了如何替换yarn路径&#xff0c;希望可以帮助到大家。

【YOLO系列算法人员摔倒检测】

YOLO系列算法人员摔倒检测 模型和数据集下载YOLO系列算法的人员摔倒检测数据集可视化数据集图像示例&#xff1a; 模型和数据集下载 yolo行人跌倒检测一&#xff1a; 1、训练好的行人跌倒检测权重以及PR曲线&#xff0c;loss曲线等等&#xff0c;map达90%多&#xff0c;在行人跌…

测试需求平台7-产品管理服务接口一篇搞定

✍此系列为整理分享已完结入门搭建《TPM提测平台》系列的迭代版&#xff0c;拥抱Vue3.0将前端框架替换成字节最新开源的arco.design&#xff0c;其中约60%重构和20%新增内容&#xff0c;定位为从 0-1手把手实现简单的测试平台开发教程&#xff0c;内容将囊括基础、扩展和实战&a…

VSCode中打开md文件的智能提示

VSCode中打开md文件的智能提示 vscode中md的只能提示是默认关闭的,要打开必须要做些设置. 搜了好多文章,都是坑! 明明没设置成功,参数类型不对还信誓旦旦的坑自己同胞! 也难怪国内人学的那么难,反而国外学的很简单! 找了以下外面的资料,还是隔壁的人认真,给出了以下方法,测试成…

《TCP/IP详解 卷一》第6章 DHCP

目录 6.1 引言 6.2 DHCP 6.2.1 地址池和租用 6.2.2 DHCP和BOOTP消息格式 6.2.3 DHCP和BOOTP选项 6.2.4 DHCP协议操作 6.2.5 DHCPv6 6.2.6 DCHP中继 6.2.7 DHCP认证 6.2.8 重新配置扩展 6.2.9 快速确认 6.2.10 位置信息&#xff08;LCI和LoST&#xff09; 6.2.11 移…

OpenCV 4基础篇| OpenCV像素的编辑

目录 1. 前言1. 像素的访问1.1 数组索引访问1.2 img.item() 2. 像素的修改2.1 数值索引修改2.2 img.itemset() 1. 前言 像素是构成数字图像的基本单位&#xff0c;像素处理是图像处理的基本操作。 对像素的访问、修改&#xff0c;可以使用 Numpy 方法直接访问数组元素。 1. 像…

备考2024年AMC10:2000-2023年1250道AMC10真题练一练

我整理了2000-2023年的全部AMC10的AB卷真题共1250题&#xff0c;并且独家制作了多种在线练习&#xff0c;利用碎片化时间&#xff0c;一年足以通过自学在2024年AMC10竞赛中取得好成绩。 我们今天继续来随机看五道题目和解析。 2000-2023年AMC10真题练一练&#xff1a;2013年第…

洛谷P8627 [蓝桥杯 2015 省 A] 饮料换购

#先看题目 题目描述 乐羊羊饮料厂正在举办一次促销优惠活动。乐羊羊 C 型饮料&#xff0c;凭 3 个瓶盖可以再换一瓶 C 型饮料&#xff0c;并且可以一直循环下去(但不允许暂借或赊账)。 请你计算一下&#xff0c;如果小明不浪费瓶盖&#xff0c;尽量地参加活动&#xff0c;那…

Python入门学习——基础语法

一、Python解释器 1. Python解释器的作用是&#xff1a; 将Python代码翻译成计算机认识的O和1并提交计算机执行在解释器环境内可以一行行的执行我们输入的代码也可以使用解释器程序&#xff0c;去执行".py"代码文件 2. Python解释器程序在&#xff1a; <Python…