【论文阅读】ICCV 2023 计算和数据高效后门攻击

文章目录

  • 一.论文信息
  • 二.论文内容
    • 1.摘要
    • 2.引言
    • 3.主要图表
    • 4.结论

一.论文信息

论文题目: Computation and Data Efficient Backdoor Attacks(计算和数据高效后门攻击)

论文来源: 2023-ICCV(CCF-A)

论文团队: 南洋理工大学&清华大学&中关村实验室

在这里插入图片描述

二.论文内容

1.摘要

针对深度神经网络(DNN)模型的后门攻击已被广泛研究。针对不同的领域和范式提出了各种攻击技术,如图像、点云、自然语言处理、迁移学习等。在DNN模型中嵌入后门最常用的方法是毒害训练数据。他们通常从良性训练集中随机选择样本进行投毒,而不考虑每个样本对后门有效性的不同贡献,使得攻击不太理想。
最近的一项研究[40]提出使用 遗忘分数衡量每个中毒样本的重要性 ,然后过滤掉冗余数据以进行有效的后门训练。然而,这种方法是经验设计的,没有理论证明。它也非常耗时,因为它需要经过几个训练阶段来进行数据选择。为了解决这些限制,我们提出了一种新的基于置信度的评分方法,该方法可以基于距离后验有效地测量每个中毒样本的贡献。我们进一步引入贪婪搜索算法,以更快地找到信息最丰富的后门注入样本。对二维图像和三维点云分类任务的实验评估表明,我们的方法可以达到相当的性能,甚至超过基于遗忘分数的搜索方法,而只需要对标准训练过程进行几个额外的epoch计算。我们的代码可以在https://github.com/WU-YU-TONG/ computational_efficient_backdoor找到。

2.引言

深度神经网络(dnn)安全威胁的多样性[1,23]阻碍了其在许多计算机视觉(CV)任务中的商业化进程。最严重和最广为人知的威胁之一是后门攻击[23]。对手可以在训练期间向目标模型注入一个与唯一触发器相对应的隐形后门[43,28,25,17,5,10,13]。在推理过程中,妥协模型(Compromised model)在良性样本上表现良好,但在具有触发器的恶意样本上可能出现错误行为。

实现后门攻击最常见的方法是数据中毒,攻击者通过破坏某些训练样本来嵌入后门。成功后门攻击的一个关键标准是中毒样本的比例。从对抗的角度来看,我们希望在保持相同攻击成功率(ASR)的情况下投毒尽可能少的样本,原因有两个:(1)较小的投毒率可以增强攻击的可行性。攻击者只需要破坏一小部分训练数据,因此攻击要求放宽了。(2)中毒样本较少的后门攻击将更加隐蔽。许多工作通过调查训练样本提出了后门检测解决方案[7,15,29,35,38,34,18]。较小的投毒率会显著增加检测难度,降低防御效能。

大多数后门攻击随机选择固定比例的训练样本进行投毒,该比例是启发式确定的[12,16,21,41,24]。这种策略不是最优的,因为它忽略了不同样本对后门贡献的区别。 为了克服这一局限性,最近的一项工作[40]提出了一种新的方法——遗忘评分来优化中毒样本的选择过程。以模型训练过程中每个样本遗忘事件的频率作为得分,表示每个样本对后门注入的重要性。然后,在N个完整的训练周期内,通过过滤和更新策略(FUS)过滤出得分较高的样本;与随机选择策略相比,遗忘分数可以有效降低中毒率25 ~ 50%,同时达到相近的ASR。验证了不同样本对攻击性能的不同影响。

遗忘分数可以提高数据效率,但以计算效率低为代价。 具体来说,它根据经验计算每个样本在训练期间被遗忘的次数,以定位对中毒贡献更大的关键样本。遗忘分数的计算需要多个完整的训练周期([40]中的ImageNet-10的N = 10)来减少中毒样本的数量,这引入了大量的工作,对于攻击大规模数据集是不切实际的。因此,一个有趣的问题出现了:是否可能在后门中毒中同时实现数据效率和计算效率,即毫不费力和精确地识别关键中毒样本?

本文提出了一种新的攻击方法来验证上述问题。我们的贡献是双重的。提出了表示距离(RD)分数,一种新的触发无关和结构无关的度量,以识别对后门攻击成功更关键的中毒样本。具体来说,我们的目标是定位那些与目标类有较大距离的中毒样本,因为它们将在训练期间对重塑决策边界的形成做出更多贡献(后门嵌入)。通过采用该RD分数,我们可以过滤掉对后门感染不敏感的中毒样本,以降低中毒率。其次,RD分数可以在模型训练的早期阶段(即训练开始后的几个epoch)使用贪婪搜索方案来选择中毒样本。与遗忘分数相比,这显著减少了计算量。

我们在5个最先进的模型和4个常见的数据集上进行了广泛的实验,用于2D图像和3D点云分类任务。评估表明,我们的解决方案可以有效地减少毒化样本的数量,从而成功地进行后门攻击。最重要的是,与基于遗忘分数的方法相比,我们的解决方案可以使用得分模型找出重要的有毒样本,只需要几次训练,与基于遗忘分数的方法相比,这是一个很小的成本。因为后者需要经过整个培训过程才能达到同样的目标。

3.主要图表

在这里插入图片描述
图1. 对我们洞察力的直观解释。左图显示的是一个干净的模型,没有任何后门。在中间的图中,当样本被下毒时,越靠近决策边界的样本对后门的影响越小。在右图中,当选择样本进行投毒时,远离决策边界的样本可能会给模型带来更显著的变化。

在这里插入图片描述
图2. 我们方法论的工作流程。

在这里插入图片描述
图3. 干净和有毒样本的例子。

在这里插入图片描述
表1. 搜索的预算。

在这里插入图片描述
图4. 三种方法在CIFAR-10上的ASR。我们对基于分数的选择策略重复实验3次,对随机选择策略重复实验10次。我们设置α为0.3,N为10。RD评分模型的epochs为6,遗忘分数模型的epochs设置为50。

在这里插入图片描述

图5.三种方法在ImageNet-10上的ASR。我们对基于分数的选择策略和随机选择策略分别重复实验3次和5次。我们设置α为0.3,N为10。RD评分模型的epochs为6,遗忘分数模型的epochs设置为30。

在这里插入图片描述
图6. 三种方法在三维点云分类任务上的ASR。评分法重复实验3次,随机法重复实验5次。在对两种评分方法进行贪婪搜索时,我们将迭代时间N减少到7。对于ScanObject,我们将训练epoch设置为75,学习率设置为0.01。

在这里插入图片描述
表2. 训练过程中超参数黑箱设置下的ASR(%)。利用CIFAR-10数据集在ResNet18模型上进行了实验。我们训练了6个epoch的评分模型,并将迭代次数和过滤比率分别设置为10。Adam中的其他参数与其PyTorch实现保持一致。对于后门模型,我们将其训练设置固定为使用SGD作为优化器,0.05作为学习率,128作为批大小。

在这里插入图片描述

图7. 各种模型和任务的ASR和Accuracy。所有的ASR都是使用我们在实验中使用的最高中毒比的RD分数获得的,即CIFAR10的0.0017,ImageNet-10的0.0095,ModelNet40的0.01,ScanObject的0.09。在上述比率下,后门的ASR趋于稳定。

在这里插入图片描述
图8. 贪心搜索中α值变化时,不同毒比下RD评分的ASR。每个实验我们重复三次。在所有的实验中,我们将N设置为10,将评分模型的epochs设置为6。

图9. 贪婪搜索中迭代时间N变化时,不同毒比下RD评分的ASR。每个实验我们重复三次。在所有的实验中,我们将评分模型的epochs设置为6。

在这里插入图片描述
图10. 评分模型的训练时间对两种方法的影响。所有实验都在CIFAR-10, ResNet18上使用0.001的中毒比进行。

在这里插入图片描述
图11. 遗忘分数和RD分数的ASR。我们使用ResNet18作为受害者模型,并将评分模型的架构改为MobileNet和VGG16。

4.结论

在本文中,我们提出了一个新的分数,通过评估给定中毒样本对目标类的L2范数来衡量中毒样本对后门学习过程的贡献。通过过滤掉得分较低的样本,我们的方法获得了比随机选择策略更好的后门ASR。我们在各种数据集和模型架构上进行了广泛的实验,以显示与先前工作相比,我们的方法的通用性和可移植性。

对于未来的工作,我们认为虽然RD分数具有很高的适应不同任务的能力,但其在某些场景中的有效性尚未得到充分的研究。在未来,我们希望将我们的研究兴趣转向两个方向。首先,对于像目标检测这样的高级任务[33],评分机制应该处理以下独特的挑战:(1)多任务,如目标定位和分类,如何通过同时采取这些方面来减少有毒预算是一个关键问题;(2)多实例,如一个样本可能包含多个对象,在设计评分方法时,如何衡量给定中毒样本的重要性使问题变得更加复杂。其次,对自然语言生成等非分类任务的中毒效率研究较少[9]。搜索方法需要满足多种损失函数。因此,调整类似的方法来选择重要的毒物样本可能是具有挑战性的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2805596.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

AI文生图网站测评

主要测评文章配图生成效果、绘制logo等效果 测评关键点:生成效果、网站易用度、是否免费 测评prompt:请生成一个文章内容配图,图片比例是3:2,文章主旨是AI既是机遇,也存在挑战和风险,要求图片…

Matlab/simulink基于vsg的风光储调频系统建模仿真(持续更新)

​ 1.Matlab/simulink基于vsg的风光储调频系统建模仿真(持续更新)

leet hot 100-3 最长连续序列

两数之和 原题链接思路代码 原题链接 leet hot 100-3 128. 最长连续序列 思路 可以把所有的数字放到容器里面去 维护一个最大值 每一次去遍历数字 查看但当前数字是否为起始位置(它的前面是否有比它小一位的数字) 如果是起始位置 就记录一下当前值 并…

应用回归分析:泊松回归

泊松回归是一种广泛用于计数数据的回归分析方法。它适用于响应变量是非负整数的情况,特别是当这些计数呈现出明显的离散分布时。泊松回归通过泊松分布的概率分布函数来建模计数数据,使其成为处理计数数据的自然选择。本文将介绍泊松回归的基本概念、应用…

FastJson反序列化漏洞(Fastjson1.2.47)

一、FastJson Fastjson 是一个阿里巴巴公司开源的 Java 语言编写的高性能功能完善的 JSON 库。可以将Java 对象转换为 JSON 格式(序列化),当然它也可以将 JSON 字符串转换为 Java 对象(反序列化) 它采用一种“假定有序快速匹配”的算法&…

【RAG实践】基于LlamaIndex和Qwen1.5搭建基于本地知识库的问答机器人

什么是RAG LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。 正是在这样的背景下,检索增强生成技术(Retrieval-Augmented G…

SpringBoot -【BeanPostProcessor】基础使用及应用场景

BeanPostProcessor应用与优化 1. 引言 在现代软件开发中,企业开发面临着越来越复杂的系统架构和业务需求。随着项目规模的扩大和技术栈的增多,需要更高效的工具来应对这些挑战,并确保代码的可维护性和扩展性。 在这样的背景下,Be…

第五章虚拟机栈

第五章虚拟机栈 文章目录 第五章虚拟机栈1. 虚拟机栈概述1.1 虚拟机栈出现的背景1.2 初步印象1.2.1 内存中的栈与堆 1.3 虚拟机栈基本内容1.3.1 Java虚拟机栈是什么?1.3.2 栈的特点(优点)1.3.3 栈中可能出现的异常1.3.4 设置栈内存大小 2. 栈的存储结构2.1 栈中存储…

安科瑞企业微电网智慧能源管理系统生态交流会顺利举行

2024年1月12日,安科瑞企业微电网智慧能源管理系统生态交流会顺利举行,本次会议旨在围绕双碳目标,共同探讨如何抓住新机遇、新市场,充分利用安科瑞企业微电网智慧能源的一站式服务,为企业节能、减碳、降本赋能&#xff…

第十一天-Excel的操作

目录 1.xlrd-Excel的读模块 安装 使用 获取工作簿 读取工作簿的内容 xlsxwriter-Excel的写模块 安装 使用 生成图表 add_series参数 图表的样式 demo:生成图表 Excel的操作在python中有多个模块,为了能够快速使用,选择了相对简单…

变分自编码器 VAE 超详解,从简单公式推导到模型结构到模型理解

参考文献: [1] Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv preprint arXiv:1312.6114, 2013. [2] Doersch C. Tutorial on variational autoencoders[J]. arXiv preprint arXiv:1606.05908, 2016. [3] 变分自编码器(一&#xff…

Linux学习方法-框架学习法——Linux应用程序编程框架

配套视频学习链接:https://www.bilibili.com/video/BV1HE411w7by?p4&vd_sourced488bc722b90657aaa06a1e8647eddfc 目录 Linux应用程序编程 Linux应用程序编程 Linux文件I/O(input/output) Linux文件I/O(五种I/O模型) Linux多进程 Linux多线程 网络通信(s…

ChatGPT在综合数据处理中的应用(续篇)

ChatGPT在综合数据处理中的应用(续篇) 小蜜蜂AI网站可以体验,扫码注册。 1.1 案例1: 用户连续活跃天数获取 ​ 用户连续活跃天天数有点类似于留存率指标,也能反映用户留存情况,实现逻辑稍微有些难度,我们…

第六章 本地方法接口

第六章 本地方法接口 文章目录 第六章 本地方法接口0. 前情提要1. 什么是本地方法2. 为什么要使用Native Method 0. 前情提要 图1 JVM架构 前几章讲完了类加载器子系统、运行时数据区的虚拟机栈和PC寄存器。这一节先穿插一节本地方法接口和本地方法库,再介绍本地方法…

第3.3章:StarRocks数据导入——Stream Load

一、概述 Stream Load是StarRocks最为核心的导入方式,用户通过发送HTTP请求将本地文件或数据流导入至StarRocks中,其本身不依赖其他组件。 Stream Load支持csv和json两种数据文件格式,适用于数据文件数量较少且单个文件的大小不超过10GB 的场…

RGB颜色如何转换为十六进制?16进制颜色代码怎么转为RGB颜色值?

我们在调整网站的色彩搭配,或修改图片的时候,偶尔需要用到RGB颜色值,或者16进制颜色代码。 如果我只知道16进制颜色代码想要知道RGB颜色值,那么16进制颜色代码怎么转为RGB颜色值?又或者我知道RGB颜色值想要知道16进制…

golang tun设备创建并监听

golang tun设备创建并监听 linux tun设备文件地址为/dev/net/tun.直接打开即可(关闭文件描述符创建的tun虚拟接口自动注销) fd,err:syscall.Open("/dev/net/tun",syscall.O_RDWR,0640)//关闭 syscall.Close(fd)初始化 配置ip地址启动虚拟网卡 ip addr add xxx.xx…

深入理解flinksql执行流程,calcite与catalog相关概念,扩展解析器实现语法的扩展

深入理解Flink Sql执行流程 1 Flink SQL 解析引擎1.1SQL解析器1.2Calcite处理流程1.2.1 SQL 解析阶段(SQL–>SqlNode)1.2.2 SqlNode 验证(SqlNode–>SqlNode)1.2.3 语义分析(SqlNode–>RelNode/RexNode&#…

[c++]实例观察返回值优化

1 返回值优化现象 RVO 如下代码,在 MakeObj() 中创建了一个局部对象 obj,并将 obj 返回。 Test() 函数调用了 MakeObj(),并将 MakeObj() 的返回值赋值给了 obj。 按我们的预期,MakeObj() 是值返回,在 main() 调用 Tes…

商业智能信息系统(BI):一文扫盲,全面掌握企业经营状况。

大家好,我是大美B端工场,本期继续分享商业智能信息系统的设计,欢迎大家关注,如有B端写系统界面的设计和前端需求,可以联络我们。 一、BI是什么 商业智能(Business Intelligence,简称BI&#xf…