并发编程(3)JMM

5 共享模型之内存

本章内容

上一章讲解的 Monitor 主要关注的是访问共享变量时,保证临界区代码的原子性.

这一章我们进一步深入学习共享变量在多线程间的【可见性】问题与多条指令执行时的【有序性】问题

5.1 Java 内存模型

JMM 即 Java Memory Model,它定义了主存、工作内存抽象概念,底层对应着 CPU 寄存器、缓存、硬件内存、CPU 指令优化等。

JMM 体现在以下几个方面

  • 原子性 - 保证指令不会受到线程上下文切换的影响

  • 可见性 - 保证指令不会受 cpu 缓存的影响

  • 有序性 - 保证指令不会受 cpu 指令并行优化的影响

5.2 可见性

退不出的循环

先来看一个现象,main 线程对 run 变量的修改对于 t 线程不可见,导致了 t 线程无法停止:

static boolean run = true;public static void main(String[] args) throws InterruptedException {Thread t = new Thread(()->{while(run){// ....}});t.start();sleep(1);run = false; // 线程t不会如预想的停下来
}

为什么呢?分析一下:

  1. 初始状态, t 线程刚开始从主内存读取了 run 的值到工作内存。

image.png

  1. 因为 t 线程要频繁从主内存中读取 run 的值,JIT 编译器会将 run 的值缓存至自己工作内存中的高速缓存中,减少对主存中 run 的访问,提高效率

image.png

  1. 1 秒之后,main 线程修改了 run 的值,并同步至主存,而 t 是从自己工作内存中的高速缓存中读取这个变量的值,结果永远是旧值

image.png

解决方法

volatile(易变关键字)

它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存

可见性 vs 原子性

前面例子体现的实际就是可见性,它保证的是在多个线程之间,一个线程对 volatile 变量的修改对另一个线程可见,不能保证原子性,仅用在一个写线程,多个读线程的情况:

上例从字节码理解是这样的:

image.png

比较一下之前我们讲线程安全时举的例子:两个线程一个 i++ 一个 i-- ,只能保证看到最新值,不能解决指令交错

image.png

注意

synchronized 语句块既可以保证代码块的原子性,也同时保证代码块内变量的可见性。但缺点是
synchronized 是属于重量级操作,性能相对更低

如果在前面示例的死循环中加入 System.out.println() 会发现即使不加 volatile 修饰符,线程 t 也能正确看到对 run 变量的修改了,想一想为什么?
因为其内部包含了synchronized 的使用

(同步)模式之 Balking(犹豫)

  1. 定义

Balking (犹豫)模式用在一个线程发现另一个线程或本线程已经做了某一件相同的事,那么本线程就无需再做了,直接结束返回

  1. 实现

例如:

public class MonitorService {// 用来表示是否已经有线程已经在执行启动了private volatile boolean starting;public void start() {log.info("尝试启动监控线程...");synchronized (this) {if (starting) {return;}starting = true;}// 真正启动监控线程...}
}

当前端页面多次点击按钮调用 start 时

输出

[http-nio-8080-exec-1] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(false)
[http-nio-8080-exec-1] cn.itcast.monitor.service.MonitorService - 监控线程已启动...
[http-nio-8080-exec-2] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(true)
[http-nio-8080-exec-3] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(true)
[http-nio-8080-exec-4] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(true)

它还经常用来实现线程安全的单例

public final class Singleton {private Singleton() { }private static Singleton INSTANCE = null;public static synchronized Singleton getInstance() {if (INSTANCE != null) {return INSTANCE;}INSTANCE = new Singleton();return INSTANCE;}
}

对比一下保护性暂停模式:保护性暂停模式用在一个线程等待另一个线程的执行结果,当条件不满足时线程等待。

5.3 有序性

5.3.1 指令重排特性

JVM 会在不影响正确性的前提下,可以调整语句的执行顺序,

思考下面一段代码

static int i;
static int j;// 在某个线程内执行如下赋值操作
i = ...; 
j = ...;

可以看到,至于是先执行 i 还是 先执行 j ,对最终的结果不会产生影响。所以,上面代码真正执行时,既可以是

i = ...; 
j = ...;

也可以是

j = ...;
i = ...;

这种特性称之为『指令重排』,多线程下『指令重排』会影响正确性。

为什么要有重排指令这项优化呢?从 CPU 执行指令的原理来理解一下吧

5.3.2 原理之(CPU)指令级并行

1 名词

Clock Cycle Time 时钟周期时间

主频的概念大家接触的比较多,而 CPU 的 Clock Cycle Time(时钟周期时间),等于主频的倒数,意思是 CPU 能够识别的最小时间单位,比如说 4G 主频的 CPU 的 Clock Cycle Time 就是 0.25 ns,作为对比,我们墙上挂钟的Cycle Time 是 1s

例如,运行一条加法指令一般需要一个时钟周期时间

CPI 平均时钟周期数

有的指令需要更多的时钟周期时间,所以引出了 CPI (Cycles Per Instruction)指令平均时钟周期数

IPC 即 CPI 的倒数

IPC(Instruction Per Clock Cycle)即 CPI 的倒数,表示每个时钟周期能够运行的指令数

CPU 执行时间

程序的 CPU 执行时间,即我们前面提到的 user + system 时间,可以用下面的公式来表示

程序 CPU 执行时间 = 指令数 * CPI * Clock Cycle Time

2 鱼罐头的故事

加工一条鱼需要 50 分钟,只能一条鱼、一条鱼顺序加工…

image.png

可以将每个鱼罐头的加工流程细分为 5 个步骤:

●去鳞清洗 10分钟

●蒸煮沥水 10分钟

●加注汤料 10分钟

●杀菌出锅 10分钟

●真空封罐 10分钟

image.png

即使只有一个工人,最理想的情况是:他能够在 10 分钟内同时做好这 5 件事,因为对第一条鱼的真空装罐,不会

影响对第二条鱼的杀菌出锅…

3 指令重排序优化

事实上,现代处理器会设计为一个时钟周期完成一条执行时间最长的 CPU 指令。为什么这么做呢?

可以想到指令还可以再划分成一个个更小的阶段,

例如,每条指令都可以分为: 取指令 - 指令译码 - 执行指令 - 内存访问 - 数据写回 这 5 个阶段

image.png

术语参考:

  • instruction fetch (IF)
  • instruction decode (ID)
  • execute (EX)
  • memory access (MEM)
  • register write back (WB)

在不改变程序结果的前提下,这些指令的各个阶段可以通过重排序组合来实现指令级并行,这一技术在 80’s 中叶到 90’s 中叶占据了计算架构的重要地位。

提示:
分阶段,分工是提升效率的关键!

指令重排的前提是,重排指令不能影响结果,例如

// 可以重排的例子
int a = 10; // 指令1
int b = 20; // 指令2
System.out.println( a + b );// 不能重排的例子
int a = 10; // 指令1
int b = a - 5; // 指令2
4 支持流水线的处理器

现代 CPU 支持多级指令流水线,例如支持同时执行 取指令 - 指令译码 - 执行指令 - 内存访问 - 数据写回 的处理器,就可以称之为五级指令流水线。这时 CPU 可以在一个时钟周期内,同时运行五条指令的不同阶段(相当于一 条执行时间最长的复杂指令),IPC = 1,本质上,流水线技术并不能缩短单条指令的执行时间,但它变相地提高了指令地吞吐率。

提示:
奔腾四(Pentium 4)支持高达 35 级流水线,但由于功耗太高被废弃

image.png

5 SuperScalar 处理器

大多数处理器包含多个执行单元,并不是所有计算功能都集中在一起,可以再细分为整数运算单元、浮点数运算单元等,这样可以把多条指令也可以做到并行获取、译码等,CPU 可以在一个时钟周期内,执行多于一条指令,IPC> 1

image.png

image.png

5.3.3 (指令重排序导致的)诡异的结果

int num = 0;
boolean ready = false;// 线程1 执行此方法
public void actor1(I_Result r) {if(ready) {r.r1 = num + num;} else {r.r1 = 1;}
}// 线程2 执行此方法
public void actor2(I_Result r) { //这里可能发生指令重排序num = 2;ready = true; 
}

I_Result 是一个对象,有一个属性 r1 用来保存结果,问,可能的结果有几种?

有同学这么分析

情况1:线程1 先执行,这时 ready = false,所以进入 else 分支结果为 1

情况2:线程2 先执行 num = 2,但没来得及执行 ready = true,线程1 执行,还是进入 else 分支,结果为1

情况3:线程2 执行到 ready = true,线程1 执行,这回进入 if 分支,结果为 4(因为 num 已经执行过了)

但我告诉你,结果还有可能是 0 😁😁😁,信不信吧!

这种情况下是:线程2 执行 ready = true,切换到线程1,进入 if 分支,相加为 0,再切回线程2 执行 num = 2

相信很多人已经晕了 😵😵😵

这种现象叫做指令重排,是 JIT 编译器在运行时的一些优化,这个现象需要通过大量测试才能复现:

借助 java 并发压测工具 jcstress https://wiki.openjdk.java.net/display/CodeTools/jcstress

mvn archetype:generate -DinteractiveMode=false -DarchetypeGroupId=org.openjdk.jcstress -DarchetypeArtifactId=jcstress-java-test-archetype -DarchetypeVersion=0.5 -DgroupId=cn.itcast -DartifactId=ordering -Dversion=1.0

创建 maven 项目,提供如下测试类

@JCStressTest
@Outcome(id = {"1", "4"}, expect = Expect.ACCEPTABLE, desc = "ok")
@Outcome(id = "0", expect = Expect.ACCEPTABLE_INTERESTING, desc = "!!!!")
@State
public class ConcurrencyTest {int num = 0;boolean ready = false;@Actorpublic void actor1(I_Result r) {if(ready) {r.r1 = num + num;} else {r.r1 = 1;}}@Actorpublic void actor2(I_Result r) {num = 2;ready = true;}}

执行

mvn clean install 
java -jar target/jcstress.jar

会输出我们感兴趣的结果,摘录其中一次结果:

image.png

可以看到,出现结果为 0 的情况有 638 次,虽然次数相对很少,但毕竟是出现了。

解决方法

volatile 修饰的变量,可以禁用指令重排

@JCStressTest
@Outcome(id = {"1", "4"}, expect = Expect.ACCEPTABLE, desc = "ok")
@Outcome(id = "0", expect = Expect.ACCEPTABLE_INTERESTING, desc = "!!!!")
@State
public class ConcurrencyTest {int num = 0;volatile boolean ready = false;@Actorpublic void actor1(I_Result r) {if(ready) {r.r1 = num + num;} else {r.r1 = 1;}}@Actorpublic void actor2(I_Result r) {num = 2;ready = true;}}

结果为

image.png

5.3.4 原理之 volatile (写屏障和读屏障来保证可见性和有序性)

volatile 的底层实现原理是内存屏障,Memory Barrier(Memory Fence)

  • 对 volatile 变量的写指令后会加入写屏障

  • 对 volatile 变量的读指令前会加入读屏障

1 如何保证可见性
  • 写屏障(sfence)保证在该屏障之前的,对共享变量的改动,都同步到主存当中
public void actor2(I_Result r) {num = 2;ready = true; // ready 是 volatile 赋值带写屏障// 写屏障
}
  • 而读屏障(lfence)保证在该屏障之后,对共享变量的读取,加载的是主存中最新数据
public void actor1(I_Result r) {// 读屏障// ready 是 volatile 读取值带读屏障if(ready) {r.r1 = num + num;} else {r.r1 = 1;}
}

image.png

2 如何保证有序性
  • 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
public void actor2(I_Result r) {num = 2;ready = true; // ready 是 volatile 赋值带写屏障// 写屏障
}
  • 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
public void actor1(I_Result r) {// 读屏障// ready 是 volatile 读取值带读屏障if(ready) {r.r1 = num + num;} else {r.r1 = 1;}
}

image.png

还是那句话,不能解决指令交错:

  • 写屏障仅仅是保证之后的读能够读到最新的结果,但不能保证读跑到它前面去

  • 而有序性的保证也只是保证了本线程内相关代码不被重排序

image.png

3 (实现单例的)double-checked locking 问题

以著名的 double-checked locking 单例模式为例

public final class Singleton {private Singleton() { }private static Singleton INSTANCE = null;public static Singleton getInstance() { if(INSTANCE == null) { // t2// 首次访问会同步,而之后的使用没有 synchronizedsynchronized(Singleton.class) {if (INSTANCE == null) { // t1INSTANCE = new Singleton(); } }}return INSTANCE;}
}

以上的实现特点是:

  • 懒惰实例化

  • 首次使用 getInstance() 才使用 synchronized 加锁,后续使用时无需加锁

  • 有隐含的,但很关键的一点:第一个 if 使用了 INSTANCE 变量,是在同步块之外

但在多线程环境下,上面的代码是有问题的,getInstance 方法对应的字节码为:

image.png

其中

  • 17 表示创建对象,将对象引用入栈 // new Singleton

  • 20 表示复制一份对象引用 // 引用地址

  • 21 表示利用一个对象引用,调用构造方法

  • 24 表示利用一个对象引用,赋值给 static INSTANCE

也许 jvm 会优化为:先执行 24,再执行 21。如果两个线程 t1,t2 按如下时间序列执行:

image.png

关键在于 0: getstatic 这行代码在 monitor 控制之外,它就像之前举例中不守规则的人,可以越过 monitor 读取INSTANCE 变量的值 .

这时 t1 还未完全将构造方法执行完毕,如果在构造方法中要执行很多初始化操作,那么 t2 拿到的是将是一个未初始化完毕的单例 .

对 INSTANCE 使用 volatile 修饰即可,可以禁用指令重排,但要注意在 JDK 5 以上的版本的 volatile 才会真正有效 .

4 double-checked locking 解决
public final class Singleton {private Singleton() { }private static volatile Singleton INSTANCE = null;public static Singleton getInstance() {// 实例没创建,才会进入内部的 synchronized代码块if (INSTANCE == null) { synchronized (Singleton.class) { // t2// 也许有其它线程已经创建实例,所以再判断一次if (INSTANCE == null) { // t1INSTANCE = new Singleton();}}}return INSTANCE;}
}

字节码上看不出来 volatile 指令的效果

image.png

image.png

如上面的注释内容所示,读写 volatile 变量时会加入内存屏障(Memory Barrier(Memory Fence)),保证下面两点:

  • 可见性

    • 写屏障(sfence)保证在该屏障之前的 t1 对共享变量的改动,都同步到主存当中
    • 而读屏障(lfence)保证在该屏障之后 t2 对共享变量的读取,加载的是主存中最新数据
  • 有序性

    • 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
    • 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
  • 更底层是读写变量时使用 lock 指令来多核 CPU 之间的可见性与有序性

image.png

5 happens-before (的几个规则)

happens-before 规定了对共享变量的写操作对其它线程的读操作可见,它是可见性与有序性的一套规则总结,抛开以下 happens-before 规则,JMM 并不能保证一个线程对共享变量的写,对于其它线程对该共享变量的读可见

情况1.线程解锁 m 之前对变量的写,对于接下来对 m 加锁的其它线程对该变量的读可见

static int x;
static Object m = new Object();new Thread(()->{synchronized(m) {x = 10;}
},"t1").start();new Thread(()->{synchronized(m) {System.out.println(x);}
},"t2").start();

情况2.线程对 volatile 变量的写,对接下来其它线程对该变量的读可见

volatile static int x;new Thread(()->{x = 10;
},"t1").start();new Thread(()->{System.out.println(x);
},"t2").start();

情况3.线程 start 前对变量的写,对该线程开始后对该变量的读可见

static int x; 
x = 10;new Thread(()->{System.out.println(x);
},"t2").start();

情况4.线程结束前对变量的写,对其它线程得知它结束后的读可见(比如其它线程调用 t1.isAlive() 或 t1.join()等待它结束)

static int x;Thread t1 = new Thread(()->{x = 10;
},"t1");
t1.start();t1.join();
System.out.println(x);

情况5.线程 t1 打断 t2(interrupt)前对变量的写,对于其他线程得知 t2 被打断后对变量的读可见(通过t2.interrupted 或 t2.isInterrupted)

static int x;public static void main(String[] args) {Thread t2 = new Thread(()->{while(true) {if(Thread.currentThread().isInterrupted()) {System.out.println(x);break;}}},"t2");t2.start();new Thread(()->{sleep(1);x = 10;t2.interrupt();},"t1").start();while(!t2.isInterrupted()) {Thread.yield();}System.out.println(x);
}

情况6: 对变量默认值(0,false,null)的写,对其它线程对该变量的读可见

情况7: 具有传递性,如果 x hb-> y 并且 y hb-> z 那么有 x hb-> z ,配合 volatile 的防指令重排,有下面的例子

volatile static int x;
static int y;new Thread(()->{ y = 10;x = 20;
},"t1").start();new Thread(()->{// x=20 对 t2 可见, 同时 y=10 也对 t2 可见System.out.println(x); 
},"t2").start();

变量都是指成员变量或静态成员变量

5.3.5 习题

balking 模式习题

希望 doInit() 方法仅被调用一次,下面的实现是否有问题,为什么? 不能保证原子性

public class TestVolatile {volatile boolean initialized = false;void init() {if (initialized) { return;} doInit();initialized = true;}private void doInit() {}
}
线程安全单例习题

单例模式有很多实现方法,饿汉、懒汉、静态内部类、枚举类,试分析每种实现下获取单例对象(即调用getInstance)时的线程安全,并思考注释中的问题

饿汉式:类加载就会导致该单实例对象被创建
懒汉式:类加载不会导致该单实例对象被创建,而是首次使用该对象时才会创建

实现1:

// 问题1:为什么加 final
// 问题2:如果实现了序列化接口, 还要做什么来防止反序列化破坏单例
public final class Singleton implements Serializable {// 问题3:为什么设置为私有? 是否能防止反射创建新的实例?private Singleton() {}// 问题4:这样初始化是否能保证单例对象创建时的线程安全?private static final Singleton INSTANCE = new Singleton();// 问题5:为什么提供静态方法而不是直接将 INSTANCE 设置为 public, 说出你知道的理由public static Singleton getInstance() {return INSTANCE;}public Object readResolve() {return INSTANCE;}
}

实现2:

// 问题1:枚举单例是如何限制实例个数的
// 问题2:枚举单例在创建时是否有并发问题
// 问题3:枚举单例能否被反射破坏单例
// 问题4:枚举单例能否被反序列化破坏单例
// 问题5:枚举单例属于懒汉式还是饿汉式
// 问题6:枚举单例如果希望加入一些单例创建时的初始化逻辑该如何做
enum Singleton { INSTANCE; 
}

实现3:

public final class Singleton {private Singleton() { }private static Singleton INSTANCE = null;// 分析这里的线程安全, 并说明有什么缺点public static synchronized Singleton getInstance() {if( INSTANCE != null ){return INSTANCE;} INSTANCE = new Singleton();return INSTANCE;}
}

实现4:DCL

public final class Singleton {private Singleton() { }// 问题1:解释为什么要加 volatile ?private static volatile Singleton INSTANCE = null;// 问题2:对比实现3, 说出这样做的意义 public static Singleton getInstance() {if (INSTANCE != null) { return INSTANCE;}synchronized (Singleton.class) { // 问题3:为什么还要在这里加为空判断, 之前不是判断过了吗if (INSTANCE != null) { // t2 return INSTANCE;}INSTANCE = new Singleton(); return INSTANCE;} }
}

(推荐的)实现5:

public final class Singleton {private Singleton() { }// 问题1:属于懒汉式还是饿汉式  懒汉式private static class LazyHolder {static final Singleton INSTANCE = new Singleton();}// 问题2:在创建时是否有并发问题   JVM保证其安全性public static Singleton getInstance() {return LazyHolder.INSTANCE;}
}

5.4 本章小结

本章重点讲解了 JMM 中的

  • 可见性 - 由 JVM 缓存优化引起

  • 有序性 - 由 JVM 指令重排序优化引起

  • happens-before 规则

  • 原理方面

    • CPU 指令并行
    • volatile
  • 模式方面

    • 两阶段终止模式的 volatile 改进
      }
      synchronized (Singleton.class) {
      // 问题3:为什么还要在这里加为空判断, 之前不是判断过了吗
      if (INSTANCE != null) { // t2
      return INSTANCE;
      }
      INSTANCE = new Singleton();
      return INSTANCE;
      }
      }
      }

(推荐的)实现5:```java
public final class Singleton {private Singleton() { }// 问题1:属于懒汉式还是饿汉式  懒汉式private static class LazyHolder {static final Singleton INSTANCE = new Singleton();}// 问题2:在创建时是否有并发问题   JVM保证其安全性public static Singleton getInstance() {return LazyHolder.INSTANCE;}
}

5.4 本章小结

本章重点讲解了 JMM 中的

  • 可见性 - 由 JVM 缓存优化引起

  • 有序性 - 由 JVM 指令重排序优化引起

  • happens-before 规则

  • 原理方面

    • CPU 指令并行
    • volatile
  • 模式方面

    • 两阶段终止模式的 volatile 改进
    • 同步模式之 balking

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2803278.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

SQL库操作

1、创建数据库 概念 创建数据库:根据项目需求创建一个存储数据的仓库 使用create database 数据库名字创建 数据库层面可以指定字符集:charset/character set 数据库层面可以指定校对集:collate 创建数据库会在磁盘指定存放处产生一个文件夹 创建语法 create …

六.生成makefile文件 并基于makefile文件编译opencv

1.点击【Generate】 生成makefile文件 2.进入目录下编译opencv源码,mingw32-make -j 8 3..编译出现报错 4.取消[WITH_OPENCL_D3D11_NV]选项,再次【configure】【generate】 然后再次编译:mingw32-make -j 8

【springblade】springblade(bladeX) 数据权限失效原因分析

文章目录 数据权限接口权限 前言:最近博主在按照bladeX官方文档 配置数据权限 结果发现失效了,网上搜了一下没找到合适的答案,本着求人不如求己的精神,自己调试了一下发现了问题所在,也大致看了一下bladeX的权限逻辑。…

这份攻略帮助你分分钟构建出“幻兽帕鲁游戏”极致体验【下】

在上一篇文章这份攻略帮助你分分钟构建出“幻兽帕鲁游戏”极致体验【上】中写了,极狐GitLab 将 terraform state 文件管理了起来。这篇文章将演示如何将所有的 terraform 文件存储到极狐GitLab 中,并且使用 CI/CD 自动实现 terraform 命令的执行。 在 D…

最简单方式把jar打包成Windows服务

废话 😢 将JAR文件转化为Windows服务是一种高效且常见的Java应用部署策略。这种转变赋予了Java应用程序在Windows操作系统上以无界面后台服务模式运行的能力,从而实现了持续、稳定且可靠的功能提供。这种部署方式不仅提升了应用的可用性&#xff0c…

re-迷宫题学习

re中的迷宫问题有以下特点: 在内存中布置一张 "地图"将用户输入限制在少数几个字符范围内.一般只有一个迷宫入口和一个迷宫出口 布置的地图可以由可显字符 (比如#和*)组合而成 (这非常明显, 查看字符串基本就知道这是个迷宫题了.), 也可以单纯用不可显的十六进制值进…

【鸿蒙 HarmonyOS 4.0】UIAbility、页面及组件的生命周期

一、背景 主要梳理下鸿蒙系统开发中常用的生命周期 二、UIAbility组件 UIAbility组件是一种包含UI界面的应用组件,主要用于和用户交互。 UIAbility组件是系统调度的基本单元,为应用提供绘制界面的窗口;一个UIAbility组件中可以通过多个页…

【大厂AI课学习笔记NO.50】2.3深度学习开发任务实例(3)任务背景与目标

我们经常在做项目的时候,觉得分析背景和目标是浪费时间,觉得不过如此。 其实目标梳理特别重要,直接决定你数据的需求分析,模型的选择,决定你交付的质量。 人工智能项目也和其他项目一样,不要想当然&#…

7-liunx服务器规范

目录 概况liunx日志liunx系统日志syslog函数openlog 可以改变syslog默认输出方式 ,进一步结构化 用户信息进程间的关系会话ps命令查看进程关系 系统资源限制改变工作目录和根目录服务器程序后台话 概况 liunx服务器上有很多细节需要注意 ,这些细节很重要…

Redis进阶篇

Redis线程模型 redis是基于内存运行的高性能k-v数据库,6.x之前是单线程, 对外提供的键值存储服务的主要流程 是单线程,也就是网络 IO 和数据读写是由单个线程来完成,6.x之后引入多线程而键值对读写命 令仍然是单线程处理的,所以 …

智能未来之路:《NIST AI RMF 1.0》与负责任的AI发展

引言 在当今快速发展的人工智能领域,美国国家标准与技术研究院(NIST)发布的《NIST AI RMF 1.0》框架是一个标志性的里程碑。这一框架不仅为AI技术的负责任和可信赖使用提供了重要指导,而且对于推动可持续的AI发展具有深远影响。本…

CrossOver虚拟机软件2024有哪些功能?最新版本支持哪些游戏?

CrossOver由codewaver公司开发的类虚拟机软件,目的是使linux和Mac OS X操作系统和window系统兼容。CrossOver不像Parallels或VMware的模拟器,而是实实在在Mac OS X系统上运行的一个软件。CrossOvers能够直接在Mac上运行Windows软件与游戏,而不…

创建型设计模式 - 原型设计模式 - JAVA

原型设计模式 一 .简介二. 案例三. 补充知识 前言 这是我在这个网站整理的笔记,有错误的地方请指出,关注我,接下来还会持续更新。 作者:神的孩子都在歌唱 一 .简介 原型模式提供了一种机制,可以将原始对象复制到新对象&#xff0…

一文读懂什么是 IP 欺骗

IP欺骗被认为是最容易发起且最具破坏性的攻击之一。这种攻击方式通过伪造源IP地址来隐藏攻击者的真实身份,从而可以逃避追踪和封锁。由于IP欺骗的隐蔽性和难以追踪性,它经常被用于发起各种恶意攻击,如DDoS攻击、网络钓鱼和诈骗、内部网络攻击…

DM数据库学习之路(十八)DMHS数据实时同步软件部署及迁移测试

​​​​​ DMDRS介绍 产品介绍 达梦数据实时同步软件(以下简称 DMDRS)是支持异构环境的高性能、高可靠、高可扩展数据库实时同步复制系统。该产品采用基于日志的结构化数据复制技术,不依赖主机上源数据库的触发器或者规则,对主…

docker部署seata1.6.0

docker部署seata1.6.0 Seata 是 阿里巴巴 开源的 分布式事务中间件,解决 微服务 场景下面临的分布式事务问题。需要先搭建seata服务端然后与springcloud的集成以实现分布式事务控制的过程 ,项目中只需要在远程调用APi服务的方法上使用注解 GlobalTransa…

电商+支付双系统项目------电商系统中收货模块的开发

本篇文章是讲关于项目的收货地址模块的设计。这个就比较简单了,我就不像之前的文章讲的那么详细了,就简单讲讲就好。 首先先设计 DAO 层: package com.imooc.mall.dao;import com.imooc.mall.pojo.Shipping; import org.apache.ibatis.annot…

分类预测 | Matlab实现KPCA-ISSA-LSSVM基于核主成分分析和改进的麻雀搜索算法优化最小二乘支持向量机故障诊断分类预测

分类预测 | Matlab实现KPCA-ISSA-LSSVM基于核主成分分析和改进的麻雀搜索算法优化最小二乘支持向量机故障诊断分类预测 目录 分类预测 | Matlab实现KPCA-ISSA-LSSVM基于核主成分分析和改进的麻雀搜索算法优化最小二乘支持向量机故障诊断分类预测分类效果基本描述程序设计参考资…

Unity接入SQLite (一):SQLite介绍

1.简介 SQLite是一个开源的嵌入式关系数据库管理系统。它是一种轻量级的数据库引擎,不需要单独的服务器进程,可以直接嵌入到应用程序中使用。Sqlite使用简单、高效,并且具有对标准SQL的完整支持。它适用于需要在本地存储和访问数据的应用程序…

wordpress免费主题模板

免费大图wordpress主题 首页是一张大图的免费wordpress主题模板。简洁实用,易上手。 https://www.jianzhanpress.com/?p5857 wordpress免费模板 动态效果的wordpress免费模板,banner是动态图片效果,视觉效果不错。 https://www.jianzhan…