C# OpenCvSharp DNN Low Light image Enhancement

目录

介绍

效果

模型信息

项目

代码

下载


C# OpenCvSharp DNN Low Light image Enhancement

介绍

github地址:https://github.com/zhenqifu/PairLIE

  

效果

模型信息

 Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[1, 3, 512, 512]
name:exposure
tensor:Float[1]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 3, 512, 512]
---------------------------------------------------------------
 

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Linq.Expressions;
using System.Numerics;
using System.Reflection;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        string modelpath;

        int inpHeight;
        int inpWidth;

        Net opencv_net;
        Mat BN_image;

        Mat image;
        Mat result_image;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            modelpath = "model/pairlie_512x512.onnx";

            inpHeight = 512;
            inpWidth = 512;

            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

            image_path = "test_img/1.png";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();

            image = new Mat(image_path);

            int srch = image.Rows;
            int srcw = image.Cols;

            BN_image = CvDnn.BlobFromImage(image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);

            opencv_net.SetInput(BN_image, "input");

            Mat one = new Mat(1,1,MatType.CV_32F,new float[] { 0.5f});
            Mat exposure = CvDnn.BlobFromImage(one);

            opencv_net.SetInput(exposure, "exposure");

            //模型推理,读取推理结果
            Mat[] outs = new Mat[1] { new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

            dt1 = DateTime.Now;

            opencv_net.Forward(outs, outBlobNames);

            dt2 = DateTime.Now;

            float* pdata = (float*)outs[0].Data;
            int out_h = outs[0].Size(2);
            int out_w = outs[0].Size(3);
            int channel_step = out_h * out_w;
            float[] data = new float[channel_step * 3];
            for (int i = 0; i < data.Length; i++)
            {
                data[i] = pdata[i] * 255;

                if (data[i] < 0)
                {
                    data[i] = 0;
                }
                else if (data[i] > 255)
                {
                    data[i] = 255;
                }
            }

            float[] temp_r = new float[out_h * out_w];
            float[] temp_g = new float[out_h * out_w];
            float[] temp_b = new float[out_h * out_w];

            Array.Copy(data, temp_r, out_h * out_w);
            Array.Copy(data, out_h * out_w, temp_g, 0, out_h * out_w);
            Array.Copy(data, out_h * out_w * 2, temp_b, 0, out_h * out_w);

            Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);
            Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);
            Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);

            result_image = new Mat();
            Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);

            result_image.ConvertTo(result_image, MatType.CV_8UC3);

            Cv2.Resize(result_image, result_image, new OpenCvSharp.Size(srcw, srch));

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Linq.Expressions;
using System.Numerics;
using System.Reflection;
using System.Windows.Forms;namespace OpenCvSharp_DNN_Demo
{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string modelpath;int inpHeight;int inpWidth;Net opencv_net;Mat BN_image;Mat image;Mat result_image;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){modelpath = "model/pairlie_512x512.onnx";inpHeight = 512;inpWidth = 512;opencv_net = CvDnn.ReadNetFromOnnx(modelpath);image_path = "test_img/1.png";pictureBox1.Image = new Bitmap(image_path);}private unsafe void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;Application.DoEvents();image = new Mat(image_path);int srch = image.Rows;int srcw = image.Cols;BN_image = CvDnn.BlobFromImage(image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);opencv_net.SetInput(BN_image, "input");Mat one = new Mat(1,1,MatType.CV_32F,new float[] { 0.5f});Mat exposure = CvDnn.BlobFromImage(one);opencv_net.SetInput(exposure, "exposure");//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();dt1 = DateTime.Now;opencv_net.Forward(outs, outBlobNames);dt2 = DateTime.Now;float* pdata = (float*)outs[0].Data;int out_h = outs[0].Size(2);int out_w = outs[0].Size(3);int channel_step = out_h * out_w;float[] data = new float[channel_step * 3];for (int i = 0; i < data.Length; i++){data[i] = pdata[i] * 255;if (data[i] < 0){data[i] = 0;}else if (data[i] > 255){data[i] = 255;}}float[] temp_r = new float[out_h * out_w];float[] temp_g = new float[out_h * out_w];float[] temp_b = new float[out_h * out_w];Array.Copy(data, temp_r, out_h * out_w);Array.Copy(data, out_h * out_w, temp_g, 0, out_h * out_w);Array.Copy(data, out_h * out_w * 2, temp_b, 0, out_h * out_w);Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);result_image = new Mat();Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);result_image.ConvertTo(result_image, MatType.CV_8UC3);Cv2.Resize(result_image, result_image, new OpenCvSharp.Size(srcw, srch));pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}}
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2799846.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

javaSE多态

文章目录 斜体样式1.1 面向对象三大特征 ?1.2 什么是多态 ?*斜体样式*1.3 多态的前提1.4 多态的成员访问特点1.5 多态的优缺点1.6 多态的转型1.7 多态的转型注意1.8 解决转型安全隐患 2 内部类2.1 内部类的分类什么是内部类 ?什么时候使用内部类 ?内部类分类 ? 2.2 成员内…

四、分类算法 - 朴素贝叶斯算法

目录 1、朴素贝叶斯算法 1.1 案例 1.2 联合概率、条件概率、相互独立 1.3 贝叶斯公式 1.4 朴素贝叶斯算法原理 1.5 应用场景 2、朴素贝叶斯算法对文本进行分类 2.1 案例 2.2 拉普拉斯平滑系数 3、API 4、案例&#xff1a;20类新闻分类 4.1 步骤分析 4.2 代码分析 …

数组方法深入探究(1)--atcopyWithin

at 数组at方法&#xff08;获取数组中特定位置的元素&#xff09; const arr [1M, 2M, 3M]; console.log(arr.at(-1)) // 倒数第一个值 console.log(arr.at(-2)) // 倒数第二个值 console.log(arr.at(0)) // 正数第一个 console.log(arr.at(1)) // 正数第二个 copyWithin …

Python 进阶语法:JSON

1 什么是 JSON&#xff1f; 1.1 JSON 的定义 JSON 是 JavaScript Object Notation 的简写&#xff0c;字面上的意思是 JavaScript 对象标记。本质上&#xff0c;JSON 是轻量级的文本数据交换格式。轻量级&#xff0c;是拿它与另一种数据交换格式XML进行比较&#xff0c;相当轻…

【vue项目升级node版本】Module not foun: Error: Can‘t resolve “async hooks’问题解决方案

项目本地启动一直出现这个顽固的警告&#xff0c;并且在项目页面一直显示无法使用 找了很多的文章&#xff0c;今天终于找到解决办法 解决办法思路来源于:【vue项目升级node版本】Module not foun: Error: Can‘t resolve “async hooks’问题解决方案_cant resolve async_hoo…

LINUX读取RTC实时时钟时间

linux 读写RTC时间_linux rtc 读写-CSDN博客

maven 打包命令

Maven是基于项目对象模型(POM project object model)&#xff0c;可以通过一小段描述信息&#xff08;配置&#xff09;来管理项目的构建&#xff0c;报告和文档的软件项目管理工具。 Maven的核心功能便是合理叙述项目间的依赖关系&#xff0c;通俗点讲&#xff0c;就是通过po…

stm32——hal库学习笔记(ADC)

这里写目录标题 一、ADC简介&#xff08;了解&#xff09;1.1&#xff0c;什么是ADC&#xff1f;1.2&#xff0c;常见的ADC类型1.3&#xff0c;并联比较型工作示意图1.4&#xff0c;逐次逼近型工作示意图1.5&#xff0c;ADC的特性参数1.6&#xff0c;STM32各系列ADC的主要特性 …

LeetCode 0106.从中序与后序遍历序列构造二叉树:分治(递归)——五彩斑斓的题解(若不是彩色的可以点击原文链接查看)

【LetMeFly】106.从中序与后序遍历序列构造二叉树&#xff1a;分治&#xff08;递归&#xff09;——五彩斑斓的题解&#xff08;若不是彩色的可以点击原文链接查看&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/construct-binary-tree-from-inorder-an…

HarmonyOS Stage模型基本概念讲解

本文 我们来说harmonyos中的一种应用模型 Stage模型 官方提供了两种模型 一种是早期的 FA模型 另一种就是就是 harmonyos 3.1才开始的新增的一种模型 Stage模型 目前来讲 Stage 会成为现在乃至将来 长期推进的一种模型 也就是 无论是 现在的harmonyos 4.0 乃至 之后要发布的 …

五、分类算法 总结

代码&#xff1a; from sklearn.datasets import load_iris, fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.naive_bayes import MultinomialNB from s…

unity-firebase-Analytics分析库对接后数据不显示原因,及最终解决方法

自己记录一下unity对接了 FirebaseAnalytics.unitypackage&#xff08;基于 firebase_unity_sdk_10.3.0 版本&#xff09; 库后&#xff0c;数据不显示的原因及最终显示解决方法&#xff1a; 1. 代码问题&#xff08;有可能是代码写的问题&#xff0c;正确的代码如下&#xff…

React 事件处理 ( this问题 参数传递 ref)

React事件的命名采用小驼峰方式&#xff08;cameCase&#xff09;,而不是小写 使用JSX语法时你需要传入一个函数作为事件处理函数&#xff0c;而不是一个字符串 你不能通过返回false 的方式阻止默认行为。你必须显示式的使用preventDefault 1 this 需要谨慎对待JSX回调函数中的…

Flink双流(join)

一、介绍 Join大体分类只有两种&#xff1a;Window Join和Interval Join Window Join有可以根据Window的类型细分出3种&#xff1a;Tumbling(滚动) Window Join、Sliding(滑动) Window Join、Session(会话) Widnow Join。 &#x1f338;Window 类型的join都是利用window的机制…

ETL快速拉取物流信息

我国作为世界第一的物流大国&#xff0c;但是在目前的物流信息系统还存在着几大的痛点。主要包括以下几个方面&#xff1a; 数据孤岛&#xff1a;有些物流企业各个部门之间的数据标准不一致&#xff0c;难以实现数据共享和协同&#xff0c;容易导致信息孤岛。 操作繁琐&#x…

如何在 CentOS 上安装 ONLYOFFICE 文档 8.0

使用社区版&#xff0c;您可以在本地服务器上安装 ONLYOFFICE 文档&#xff0c;并将在线编辑器与 ONLYOFFICE 协作平台或其他热门系统集成在一起。 ONLYOFFICE 文档是什么 ONLYOFFICE 文档是一个功能强大的文档编辑器&#xff0c;支持处理文本文档、电子表格、演示文稿、可填写…

django自定义后端过滤

​ DRF自带的过滤 第一个 DjangoFilterBackend 是需要安装三方库见[搜索&#xff1a;多字段筛选]两外两个是安装注册了rest_framework就有。 如上图&#xff0c;只要配置了三个箭头所指的方向&#xff0c;就能使用。 第一个单字段过滤 用户视图集中加上filterset_fields …

Edting While Playing 瓦片地图编辑器开发整合导入自定义贴图 DEVC++ VS2022都可复制粘贴运行

接 多种类型图片模块读取-CSDN博客 与 Editing While Playing 使用 Easyx 开发的 RPG 地图编辑器 tilemap eaitor-CSDN博客 整合实现平面贴图纹理自定义 操作同上 导入步骤&#xff1a; 先运行程序&#xff0c;然后关闭&#xff0c;同目录下有四个文件夹&#xff0c; 把…

高维数据的中介效应【中介分析】《R包:HIMA》

允许基于高级中介筛选和惩罚回归技术来估计和测试高维中介效应 Hima包浏览 高维中介示意图 图1. 在暴露和结果之间有高维中介的情况 本包的作用 在确定独立筛选和极小极大凹惩罚技术的基础上&#xff0c;采用联合显著性检验方法对调解效果进行检验。使用蒙特卡罗模拟研究来展…