机器学习基本概念(李宏毅课程)

目录

  • 一、概念:
    • 1、机器学习概念:
    • 2、深度学习概念:
  • 二、深度学习中f(.)的输入和输出:
    • 1、输入:
    • 2、输出:
  • 三、三种机器学习任务:
    • 1、Regression回归任务介绍:
    • 2、Classification分类任务介绍:
    • 3、Structured Learning创造性学习:
  • 四、机器学习步骤(模型训练阶段):
    • 第一步:定义一个含有未知参数的函数(以线性函数为例):
    • 第二步: 定义损失函数:
    • 第三步: 寻找最优的w、b使得Loss最小:
      • 1.梯度下降:
  • 五、线性函数和复杂函数:
    • 1、线性函数定义:
    • 2、非线性函数定义:
    • 3、如何表示出Hard Sigmoid函数:
    • 4、对(四)中案例的深入理解(以非线性函数为例):
    • 5.多特征预测单变量+非线性函数:

一、概念:

1、机器学习概念:

机器学习 ≈ 训练生成一个函数f(.) ,这个函数相当复杂。

例如:

在这里插入图片描述

2、深度学习概念:

机器学习的目的是寻找一个满足需求的函数f(.),但是具体使用什么方式寻找f(.)没有说明。

深度学习为机器学习领域的一个子领域,故深度学习给出了寻找函数的方法,即通过“神经网络”来训练生成一个函数f(.) 。

例如:
在这里插入图片描述

二、深度学习中f(.)的输入和输出:

1、输入:

函数f(.)的输入可以是向量、矩阵、序列,根据不同场景使用不同的输入。

  • 向量
  • 矩阵:图像识别领域,一张图片可以转换成矩阵表示
  • 序列:序列预测、语音辨识、文字翻译领域输入可以转换成序列表示

在这里插入图片描述

2、输出:

根据不同任务需求f(.)的输出不同。

  • 数值
  • 类别:分类任务
  • 句子、图片:翻译任务、图片生成
    在这里插入图片描述

三、三种机器学习任务:

1、Regression回归任务介绍:

函数输入:过往PM2.5数据以及影响PM2.5的特征值
函数输出:预测未来PM2.5的值
在这里插入图片描述

2、Classification分类任务介绍:

函数输入:棋盘中黑子白子位置
函数输出:从19*19个选项中选择下一个落子位置
在这里插入图片描述

3、Structured Learning创造性学习:

函数输出:图片、文档等有结构的文件

四、机器学习步骤(模型训练阶段):

这里以回归任务为例:目标是根据2/25日浏览量数据预测2/26日浏览量数据。

第一步:定义一个含有未知参数的函数(以线性函数为例):

在这里插入图片描述
以最简单的线性回归函数y=b+Wx为例(当然机器学习的函数基本上不会这么简单):

  • 函数y=b+Wx即为平时称呼的模型
  • x为函数输入,输入的是2/25日浏览量数据
  • y为函数输出,输出的是未来2/26日浏览量数据
  • w和b都是超参数,初始为位置数,在模型训练过程中不断更新参数使得函数的输出值不断精确(模型训练阶段的最终目的是:训练集训练+验证集预测过程不断更新w和b),力图训练一个预测效果最优的模型
  • 其中w为x的权重,b为偏置值

第二步: 定义损失函数:

在这里插入图片描述
损失函数L(b,w)是一个已写好的函数,用于模型训练阶段每次更新超参数w和b时都会在验证集上使用该组w和b计算预测值,然后比较预测值和真实值的差异(损失),从而衡量本组训练得到的超参数w和b是否能使得模型预测效果最优。

  • 损失函数的输入为超参数b和w
  • Loss越大,即表示当前的一组b和w越差,Loss越小,即表示当前的一组b和w越优秀。

第三步: 寻找最优的w、b使得Loss最小:

1.梯度下降:

使用梯度下降法不断更新w和b,使得每次获得一组新的w和b(wn和bn)。

不断执行第二步和第三步使得获得最优的w和b(w和b)。
在这里插入图片描述

  • 其中η为学习率,用来控制梯度下降的快慢程度,也是一个超参数。

五、线性函数和复杂函数:

1、线性函数定义:

在这里插入图片描述

同(五),以最简单的线性回归函数y=b+Wx为例(当然机器学习的函数基本上不会这么简单):

  • x为函数输入,输入的是2/25日浏览量数据
  • y为函数输出,输出的是未来2/26日浏览量数据
  • w和b都是超参数,初始为位置数,在模型训练过程中不断更新参数使得函数的输出值不断精确(模型训练阶段的最终目的是:训练集训练+验证集预测过程不断更新w和b),力图训练一个预测效果最优的模型
  • 其中w为x的权重,b为偏置值

2、非线性函数定义:

线性函数y=wx+b不管超参数w和b如何变化,函数始终是一条直线,所以线性函数在处理具有复杂关系的xy时不适用。

  • 对于复杂函数,我们可以用简单的蓝色函数(Hard Sigmoid函数)叠加的方式来获得一个复杂函数,如下图所示:
    在这里插入图片描述
  • 对于曲线函数,我们可以对曲线每段取微分,每个微元看做是一个蓝色函数(Hard Sigmoid函数),无数个蓝色函数叠加也可以获得任意的曲线函数。
    在这里插入图片描述

3、如何表示出Hard Sigmoid函数:

各种曲线都可以通过蓝色函数(Hard Sigmoid)的叠加来表示,那么Hard Sigmoid函数又要如何表示?
在这里插入图片描述
有一种函数叫做sigmoid函数,该函数可以逼近任何的hard sigmoid函数,所以一般使用sigmoid函数来表示hard sigmoid函数。

从sigmoid函数的公式可以看出:

  • 通过改变w可以改变函数的斜率
  • 通过改变v可以改变函数的位置
  • 通过改变c可以改变函数的高度
    在这里插入图片描述
    因此,通过不同的sigmoid函数叠加我们可以获得任意的函数曲线。

4、对(四)中案例的深入理解(以非线性函数为例):

(四)中我们以线性函数y=wx+b为例,假设x和y是线性关系。其中x输入为2/25日浏览量数据,y输出为2/26日浏览量数据。而在现实中x和y不可能是简单的线性关系,那么函数应该如何表示?当然是使用我们的sigmoid函数:
在这里插入图片描述
进一步设想,案例中我们用2/25日浏览量数据预测2/26日浏览量数据,属于单特征,此时仅有一个输入x和一个输出y,如果我们输入数据为多特征,即要用2/01~2/25这25天的浏览量预测2/26日浏览量数据,函数应如何表示?很简单,数据中有25个特征,每个特征xi与y之间都有一个权重值wi, 因此多特征预测单变量的线性函数关系和非线性函数关系表示如下:
在这里插入图片描述

5.多特征预测单变量+非线性函数:

下面我们举个例子来深度理解多特征预测单变量+非线性函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2799558.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【Python】OpenCV-图片差异检测与标注

图片差异检测与标注 在图像处理领域中,检测两张图片之间的差异是一项重要的任务。本文将介绍一个使用OpenCV库进行图片差异检测的简单示例代码,并详细注释每个步骤。 1. 引言 图片差异检测是在两张图片之间寻找差异点或区域的过程。这项技术可用于监测…

http和https的区别(简述)

HTTP(HyperText Transfer Protocol)和HTTPS(HTTP Secure)都是用于在客户端和服务器之间传输数据的协议,但它们在安全性方面有重要的区别。 1.HTTP: 概述: HTTP是一种用于传输超文本的协议(超文…

Javascript中var和let之间的区别

文章目录 一.变量提升(声)二.let和var的区别 区别: 1、var有变量提升,而let没有; 2、let不允许在相同的作用域下重复声明,而var允许; 3、let没有暂时性死区问题; 4、let创建的全局变量没有给window设置对应…

【PX4学习笔记】13.飞行安全与炸机处理

目录 文章目录 目录使用QGC地面站的安全设置、安全绳安全参数在具体参数中的体现安全绳 无人机炸机处理A:无人机异常时控操作B:无人机炸机现场处理C:无人机炸机后期维护和数据处理D:无人机再次正常飞行测试 无人机飞行法律宣传 使…

基于springboot+vue的B2B平台的医疗病历交互系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

R cox回归 ggDCA报错

临床预测模型的决策曲线分析(DCA):基于ggDCA包 决策曲线分析法(decision curve analysis,DCA)是一种评估临床预测模型、诊断试验和分子标记物的简单方法。 我们在传统的诊断试验指标如:敏感性&a…

golang实现延迟队列(delay queue)

golang实现延迟队列 1 延迟队列:邮件提醒、订单自动取消 延迟队列:处理需要在未来某个特定时间执行的任务。这些任务被添加到队列中,并且指定了一个执行时间,只有达到指定的时间点时才能从队列中取出并执行。 应用场景&#xff1…

[ Python+OpenCV+Mediapipe ] 实现对象识别

一、写在前面 本文所用例子为个人学习的小结,如有不足之处请各位多多海涵,欢迎小伙伴一起学习进步,如果想法可在评论区指出,我会尽快回复您,不胜感激! 所公布代码或截图均为运行成功后展示。 二、本文内容…

PEARL: 一个轻量的计算短文本相似度的表示模型

| 💻 [code] | 💾 [data] | 🤗 PEARL-small | 🤗 PEARL-base | 论文 如何计算短文本相似度是一个重要的任务,它发生在各种场景中: 字符串匹配(string matching)。我们计算两个字符…

AWS安全组是什么?有什么用?

最近看到小伙伴在问,AWS安全组是什么?有什么用?今天我们大家就来简单聊聊,仅供参考哦! AWS安全组是什么?有什么用? 【回答】:AWS安全组是一种虚拟防火墙,用于控制进出…

贝叶斯统计——入门级笔记

绪论 1.1 引言 全概率公式 贝叶斯公式 三种信息 总体信息 当把样本视为随机变量时,它有概率分布,称为总体分布. 如果我们已经知道总体的分布形式这就给了我们一种信息,称为总体信息 样本信息 从总体中抽取的样本所提供的信息 先…

【操作系统】

计算机操作系统 计算机是如何让用户得到好的体验什么是操作系统(OS)操作系统如何管理 计算机是如何让用户得到好的体验 计算机系统是由计算机硬件和软件组成的。用户使用计算机,比如在文本文件填写内容,通过邮箱发送邮件&#xf…

opencv图像放缩与插值-resize函数

在OpenCV中,resize函数用于对图像进行尺寸调整(放大或缩小),这个过程中通常需要用到插值方法来计算新尺寸下图像像素的值。插值方法对于放缩的质量有着直接影响。 void resize(InputArray src, OutputArray dst, Size dsize, dou…

全流程点云机器学习(二)使用PaddlePaddle进行PointNet的机器学习训练和评估

前言 这不是高支模项目需要嘛,他们用传统算法切那个横杆竖杆流程复杂耗时很长,所以想能不能用机器学习完成这些工作,所以我就来整这个工作了。 基于上文的数据集切分 ,现在来对切分好的数据来进行正式的训练。 本系列文章所用的…

解决app中以webview的方式嵌入h5网页,h5网页加载不出来

问题描述:我的h5网页在web端和手机浏览器都能正常渲染展示,但是嵌入到客户的webview中,渲染加载不出来,仔细检查代码之后并没有任何代码错误和后台报错。抓耳挠腮查找两天之后发现,原因为整个h5网页的最外层高度设置成…

WordPress如何将后台右上角管理员头像去除并调整注销位置及启用注销确认功能?

WordPress后台默认情况下右上角可以看到管理员昵称和头像,将鼠标移动到该昵称上还会出现一个下拉菜单,点击下拉菜单中的“注销”无需我们再次确认就会自动退出。 现在我想将WordPress后台右上角的管理员头像和管理员昵称子菜单去除,并将“注销…

HDFS中常用的Shell命令 全面且详细

HDFS中常用的Shell命令目录 一、ls命令 二、mkdir 命令 三、put命令 四、get命令 五、mv命令 六、rm命令 七、cp命令 八、cat命令 前言 安装好hadoop环境之后,可以执行hdfs相关的shell命令对hdfs文件系统进行操作,比如文件的创建、删除、修改文…

【时事篇-05-02】20240221 2525元存17只货币基金的具体数目测算( itertools)

背景需求: 前文提到存10个货币基金,每个投150元,1500元,每天有1分钱利息,10个基金就有0.1元,比1500元投1只货币基金0.06元,的收益高一点。 【时事篇-05】20240112 150元存46只货币基金-CSDN博…

C++之new和delete表达式

目录 一、new表达式工作步骤 二、delete表达式工作步骤 三、operator new和operator delete函数的重载版本 ​编辑​编辑 四、要求一个类只能创建栈对象 五、要求一个类只能创建堆对象 一、new表达式工作步骤 使用new表达式时发生的三个步骤: 1. 调用名为opera…

第2.5章:StarRocks表设计--Colocation Join

目录 一、StarRocks数据划分 1.1 分区 1.2 分桶 二、Colocation Join实现原理 2.1 Colocate Join概述 2.2 Colocate Join实现原理 三、应用案例 注:本篇文章阐述的是StarRocks-3.2版本的Colocation Join 官网文章地址: Colocate Join | StarRoc…