【PX4SimulinkGazebo联合仿真】在Simulink中使用ROS2控制无人机进入Offboard模式起飞悬停并在Gazebo中可视化

在Simulink中使用ROS2控制无人机进入Offboard模式起飞悬停并在Gazebo中可视化

    • 系统架构
    • Matlab官方例程Control a Simulated UAV Using ROS 2 and PX4 Bridge
    • 运行所需的环境配置
    • PX4&Simulink&Gazebo联合仿真实现方法
      • 建立Simulink模型并完成基本配置
      • 整体框架
      • 各子系统实现原理
        • Arm子系统
        • Enable Offboard Control子系统
        • Takeoff子系统
    • 实现效果

本篇文章介绍如何使用ROS2控制无人机进入Offboard模式起飞悬停并在Gazebo中可视化,提供了Matlab/Simulink源代码,以及演示效果图。

环境:

MATLAB : R2022b

Ubuntu :20.04 LTS

Windows :Windows 10

ROS :ROS2 Foxy

Python: 3.8.2

Visual Studio :Visual Studio 2019

PX4 :1.13.0

系统架构

ROS2的应用程序管道非常简单,这要归功于本地通信中间件(DDS/RTPS)。microRTPS桥接工具由运行在PX4上的客户端和运行在计算机上的服务端组成,它们进行通信以提供uORB和ROS2话题格式之间的双向数据交换和话题转换。使得可以创建直接与PX4的uORB话题接口的ROS2订阅服务器或发布服务器节点,其结构如下图所示。

在这里插入图片描述

ROS 2使用px4_msgs包和px4_ROS_com包来确保使用匹配的话题定义来创建客户端和服务端代码。

px4_msgs包:px4 ROS话题定义,当构建该项目时会生成相应的兼容ROS2节点的话题类型,以及IDL文件,由fastddsgen用于生成microRTPS代码。

px4_ros_com包:服务端发布者和订阅者的microRTPS代码模板,构建过程运行一个fastddsgen实例来生成micrortps_agent的代码,该代码可编译为单个可执行文件。

这样在Ubuntu中就生成了一个可以调用uORB话题接口的ROS2节点,这个节点可以和运行在同一局域网下的Matlab/Simulink上的ROS2节点进行通信,以实现PX4&Simulink&Gazebo联合仿真。

在这里插入图片描述

Matlab官方例程Control a Simulated UAV Using ROS 2 and PX4 Bridge

Matlab官方给出了一个示例,该示例演示了如何从具有PX4自动驾驶仪的模拟无人机接收传感器读数和自动驾驶仪状态,并发送控制命令来导航模拟无人机,可以作为参考。

Control a Simulated UAV Using ROS 2 and PX4 Bridge

可以在Matlab命令行中输入以下命令打开该例程所在位置。

openExample('uav_ros/ControlASimulatedUAVUsingROS2AndPX4BridgeExample')

运行所需的环境配置

请确保已经安装前一篇文章配置好了PX4+Gazebo+ROS2+FastDDS+Matlab+Simulink联合调试环境。

【PX4-AutoPilot教程-开发环境】搭建PX4+Gazebo+ROS2+FastDDS+Matlab+Simulink联合调试环境

PX4&Simulink&Gazebo联合仿真实现方法

建立Simulink模型并完成基本配置

在Matlab工作文件夹中models文件夹中新建一个Simulink模型,我这里命名为Offboard.slx,双击使用Simulink打开。

在这里插入图片描述

在【建模】栏打开【模型设置】,【求解器】栏中【求解器类型】选为【定步长】。

在这里插入图片描述

【硬件实现】栏中【Hardware board】选择【ROS2】。

在这里插入图片描述

【代码生成】栏中【接口】勾选【连续时间】。

在这里插入图片描述

仿真调速界面勾选【启用调速以减慢仿真】。

在这里插入图片描述

整体框架

整体框架如下,主体是对时钟进行判断,1-3秒是触发Arm子系统,3-5秒是触发Enable Offboard Control子系统,5秒后是触发Takeoff子系统。

在这里插入图片描述

各子系统实现原理

Arm子系统

Arm子系统中使用ROS2 Subscribe模块订阅/fmu/timesync/out话题,并使用Bus Selector分解话题获取时间戳,将时间戳传入Subsystem子系统。

在这里插入图片描述

无人机的解锁是通过vehicle_command话题进行的,它的定义在源码Firmware/msg/vehicle_command.msg中,这个话题是地面站/nsh等终端发送的控制指令用的。

我们可以从任意已经编译过的固件中的Firmware\build\px4_fmu-v5_default\uORB\topics\vehicle_command.h文件中看到vehicle_command话题的结构体定义。

	uint64_t timestamp;double param5;double param6;float param1;float param2;float param3;float param4;float param7;uint32_t command;uint8_t target_system;uint8_t target_component;uint8_t source_system;uint8_t source_component;uint8_t confirmation;bool from_external;uint8_t _padding0[2]; // required for logger

可以看到其结构为:

时间戳+command命令+目标系统号+目标组件号+发出命令系统号+发出命令组件号+收到命令次数+数据包

在源码Firmware/msg/vehicle_command.msg中可以检索到解锁的命令ID是:

uint16 VEHICLE_CMD_COMPONENT_ARM_DISARM = 400		# Arms / Disarms a component |1 to arm, 0 to disarm|

可以在注释中看到用法,只需将param1的值赋值为1即可解锁。

综上,通过ROS2对无人机进行解锁的方法为:

订阅/fmu/timesync/out获得时间戳–>command设置为400、param1设置为1、target_system设置为1–>发布/fmu/vehicle_command/in话题。

Subsystem子系统中使用ROS2 Blank Message获得px4_msgs/vehicle_command的话题类型,导入获取到的时间戳、命令编号、传入参数等,并使用ROS2 Publish模块发布该话题。

在这里插入图片描述

Enable Offboard Control子系统

Enable Offboard Control子系统中使用ROS2 Subscribe模块订阅/fmu/timesync/out话题,并使用Bus Selector分解话题获取时间戳,将时间戳传入Subsystem子系统。

在这里插入图片描述

无人机进入Offboard模式也是通过vehicle_command话题进行的。

在源码Firmware/msg/vehicle_command.msg中可以检索到设置系统模式的命令ID是:

uint16 VEHICLE_CMD_DO_SET_MODE = 176			# Set system mode. |Mode, as defined by ENUM MAV_MODE| Empty| Empty| Empty| Empty| Empty| Empty|

这里的注释写的是将第一个参数param1设为模式的ID号,之后param2param7设置为空,但是这里的注释好像写错了。

在源码Firmware/src/modules/commander/Commander.cpp中,官方写的调节模式的命令是:

send_vehicle_command(vehicle_command_s::VEHICLE_CMD_DO_SET_MODE, 1, PX4_CUSTOM_MAIN_MODE_OFFBOARD);

send_vehicle_command()函数的定义为:

static bool send_vehicle_command(const uint32_t cmd, const float param1 = NAN, const float param2 = NAN,const float param3 = NAN,  const float param4 = NAN, const double param5 = static_cast<double>(NAN),const double param6 = static_cast<double>(NAN), const float param7 = NAN)
{vehicle_command_s vcmd{};vcmd.command = cmd;vcmd.param1 = param1;vcmd.param2 = param2;vcmd.param3 = param3;vcmd.param4 = param4;vcmd.param5 = param5;vcmd.param6 = param6;vcmd.param7 = param7;uORB::SubscriptionData<vehicle_status_s> vehicle_status_sub{ORB_ID(vehicle_status)};vcmd.source_system = vehicle_status_sub.get().system_id;vcmd.target_system = vehicle_status_sub.get().system_id;vcmd.source_component = vehicle_status_sub.get().component_id;vcmd.target_component = vehicle_status_sub.get().component_id;uORB::Publication<vehicle_command_s> vcmd_pub{ORB_ID(vehicle_command)};vcmd.timestamp = hrt_absolute_time();return vcmd_pub.publish(vcmd);
}

可以看出需要将param1赋值为1,将param2赋值为PX4_CUSTOM_MAIN_MODE_OFFBOARD才能切换为Offboard模式。

查询PX4_CUSTOM_MAIN_MODE_OFFBOARD的定义,在源码Firmware/src/modules/commander/px4_custom_mode.h中找到:

enum PX4_CUSTOM_MAIN_MODE {PX4_CUSTOM_MAIN_MODE_MANUAL = 1,PX4_CUSTOM_MAIN_MODE_ALTCTL,PX4_CUSTOM_MAIN_MODE_POSCTL,PX4_CUSTOM_MAIN_MODE_AUTO,PX4_CUSTOM_MAIN_MODE_ACRO,PX4_CUSTOM_MAIN_MODE_OFFBOARD,PX4_CUSTOM_MAIN_MODE_STABILIZED,PX4_CUSTOM_MAIN_MODE_RATTITUDE_LEGACY,PX4_CUSTOM_MAIN_MODE_SIMPLE /* unused, but reserved for future use */
};

PX4_CUSTOM_MAIN_MODE_OFFBOARD对应的数字是6。

综上,通过ROS2对无人机进入Offboard模式的方法为:

订阅/fmu/timesync/out获得时间戳–>command设置为176、param1设置为1、param2设置为6、target_system设置为1–>发布/fmu/vehicle_command/in话题。

Subsystem子系统中使用ROS2 Blank Message获得px4_msgs/vehicle_command的话题类型,导入获取到的时间戳、命令编号、传入参数等,并使用ROS2 Publish模块发布该话题。

在这里插入图片描述

Takeoff子系统

Takeoff子系统中使用ROS2 Subscribe模块订阅/fmu/timesync/out话题,并使用Bus Selector分解话题获取时间戳,将时间戳传入SendCommand子系统。

在这里插入图片描述

offboard_control_mode话题是Offboard模式的心跳包,为了保证飞行的安全性,心跳包必须以最低2Hz的频率发布,PX4在两个Offboard命令之间有一个500ms的延时,如果超过此延时,系统会将回到无人机进入Offboard模式之前的最后一个模式。

在源码Firmware/msg/offboard_control_mode.msg中可以看到offboard_control_mode话题的定义。

# Off-board control modeuint64 timestamp		# time since system start (microseconds)bool position
bool velocity
bool acceleration
bool attitude
bool body_rate
bool actuator

因为要进行位置控制所以需要将position赋值为true。

trajectory_setpoint话题是期望的位置,在源码Firmware/msg/vehicle_local_position_setpoint.msg中可以看到trajectory_setpoint话题的定义。

# Local position setpoint in NED frame
# setting something to NaN means the state should not be controlleduint64 timestamp	# time since system start (microseconds)float32 x		# in meters NED
float32 y		# in meters NED
float32 z		# in meters NED
float32 yaw		# in radians NED -PI..+PI
float32 yawspeed	# in radians/sec
float32 vx		# in meters/sec
float32 vy		# in meters/sec
float32 vz		# in meters/sec
float32[3] acceleration # in meters/sec^2
float32[3] jerk # in meters/sec^3
float32[3] thrust	# normalized thrust vector in NED# TOPICS vehicle_local_position_setpoint trajectory_setpoint

其中trajectory_setpoint话题和vehicle_local_position_setpoint话题的内容是一样的,源码Firmware/msg/tools/urtps_bridge_topics.yaml中可以看到以下代码。

  - msg:     vehicle_local_position_setpointreceive: true- msg:     trajectory_setpoint # multi-topic / alias of vehicle_local_position_setpointbase:    vehicle_local_position_setpointreceive: true

可以看出trajectory_setpoint话题是基于vehicle_local_position_setpoint话题的。

这里需要注意坐标系是NED坐标系,即北东地坐标系,所以想让无人机飞起来,z的赋值应该为负数。

综上,通过ROS2对无人机进入Offboard模式起飞悬停的方法为:

订阅/fmu/timesync/out获得时间戳–>position设置为true、x设置为0、y设置为0、z设置为-5、target_system设置为1–>发布offboard_control_mode话题和trajectory_setpoint话题。

SendCommand子系统中使用ROS2 Blank Message获得offboard_control_mode的话题类型和trajectory_setpoint的话题类型,导入获取到的时间戳、传入参数、期望位置等,并使用ROS2 Publish模块发布这些话题。

在这里插入图片描述

实现效果

Ubuntu中启动Gazebo仿真和microrts_agent守护进程,运行Simulink模型,可以看到Gazebo中的无人机已经进入Offboard模式并起飞悬停在5m的高度。

在这里插入图片描述

在这里插入图片描述


参考资料:

PX4 Gazebo Simulation

Control a Simulated UAV Using ROS 2 and PX4 Bridge

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2799489.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

4.网络游戏逆向分析与漏洞攻防-游戏启动流程漏洞-模拟游戏登陆器启动游戏并且完成注入

内容参考于&#xff1a;易道云信息技术研究院VIP课 上一个内容&#xff1a;游戏启动流程的分析 码云地址&#xff08;master 分支&#xff09;&#xff1a;https://gitee.com/dye_your_fingers/titan 码云版本号&#xff1a;bcf7559184863febdcad819e48aaacad9f25d633 代码下…

写一份简单的产品说明书:语言和表达技巧

在当今竞争激烈的市场环境中&#xff0c;一个好的产品说明书对于产品的销售和推广起着至关重要的作用。无论是软件、电子产品还是日用品&#xff0c;一份简洁明了、语言精准的产品说明书能够有效地传达产品的特点和使用方法&#xff0c;吸引消费者的注意力并建立信任感。接下来…

计网 - 域名解析的工作流程

文章目录 Pre引言1. DNS是什么2. 域名结构3. 域名解析的工作流程4. 常见的DNS记录类型5. DNS安全6. 未来的发展趋势 Pre 计网 - DNS 域名解析系统 引言 在我们日常使用互联网时&#xff0c;经常会输入各种域名来访问网站、发送电子邮件或连接其他网络服务。然而&#xff0c;我…

JS知识点学习

构造函数 构造函数语法: 大写字母开头的函数创建构造函数。 // 1.创建构造函数 function Pig(name) { this.name name } // 2. new关键字调用函数 // new Pig(佩奇) // 接受创建的对象 const peppa new Pig(佩奇) console.log(peppa) // {name:佩奇} …

微服务篇之监控

一、为什么要监控 1.问题定位 假设客户端查询一些东西的时候&#xff0c;需要经过网关&#xff0c;然后服务A调用服务H&#xff0c;服务H调用K&#xff0c;服务K调用MySQL&#xff0c;当查询不出来的时候&#xff0c;我们不能快速定位到底是哪个服务的问题&#xff0c;这就需要…

YOLOv5代码解读[02] models/yolov5l.yaml文件解析

文章目录 YOLOv5代码解读[02] models/yolov5l.yaml文件解析yolov5l.yaml文件检测头1--->耦合头检测头2--->解耦头检测头3--->ASFF检测头Model类解析parse_model函数 YOLOv5代码解读[02] models/yolov5l.yaml文件解析 yolov5l.yaml文件 # YOLOv5 &#x1f680; by Ult…

分组统计

目录 分组统计 根据部门编号分组&#xff0c;查询每个部门的编号、人数、平均工资 根据职位分组&#xff0c;统计出每个职位的人数、最低工资与最高工资 如果查询不使用 GROUP BY 子句&#xff0c;那么 SELECT 子句中只允许出现统计函数&#xff0c;其他任何字段不允许出现…

Global Gamers Challenge | 与 Flutter 一起保护地球

作者 / Kelvin Boateng 我们知道 Flutter 开发者热爱挑战&#xff0c;因此我们很高兴地宣布&#xff0c;新一轮的 Flutter 挑战赛来了&#xff01; 挑战https://flutter.cn/events/puzzle-hack Global Gamers Challenge 是一项为期 8 周的比赛&#xff0c;参赛者需要设计、构建…

【数据结构】单向循环链表

一、mian函数 #include <stdio.h> #include "./3.looplinklist.h" int main(int argc, const char *argv[]) {looplinklist* head create_looplinklist();insertHead_looplinklist(head,100);insertHead_looplinklist(head,200);insertHead_looplinklist(hea…

观察者模式和发布订阅模式的区别

从下图中可以看出&#xff0c;观察者模式中观察者和目标直接进行交互&#xff0c;而发布订阅模式中统一由调度中心进行处理&#xff0c;订阅者和发布者互不干扰。这样一方面实现了解耦&#xff0c;还有就是可以实现更细粒度的一些控制。比如发布者发布了很多消息&#xff0c;但…

《Linux C编程实战》笔记:消息队列

消息队列是一个存放在内核中的消息链表&#xff0c;每个消息队列由消息队列标识符标识。与管道不同的是消息队列存放在内核中&#xff0c;只有在内核重启&#xff08;即操作系统重启&#xff09;或显示地删除一个消息队列时&#xff0c;该消息队列才会被真正的删除。 操作消息…

使用python构建Android,探索跨平台应用开发Kivy框架

使用python构建Android&#xff0c;探索跨平台应用开发Kivy框架 1. 介绍Kivy框架 Kivy是什么&#xff1f; Kivy是一个开源的Python跨平台应用程序开发框架&#xff0c;旨在帮助开发者快速构建创新的、可扩展的移动应用和多点触控应用。Kivy采用MIT许可证&#xff0c;允许开发…

⭐北邮复试刷题106. 从中序与后序遍历序列构造二叉树__递归分治 (力扣每日一题)

106. 从中序与后序遍历序列构造二叉树 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7], postor…

Git笔记——2

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 一、撤销修改__情况一 二、撤销修改__情况二 三、撤销修改__情况三 四、删除文件 五、理解分支 六、创建、切换和合并分支初体验 七、删除分支 八、合并冲突 总…

cms内容管理系统drupal简析

Drupal CMS是一个免费、开源的内容管理系统。 1、我们可以下载一个xampp客户端&#xff0c;方便打开apache 然后在drupal官网上下载一个版本的drupal代码&#xff0c;将其放在xampp\htdocs的目录下&#xff0c;这里我将下载的文件命名为drupal9。 2、在网页里输入localhost\…

ELK入门(一)-Elasticsearch(docker版)

Elasticsearch Elasticsearch安装(docker) 下载Elasticsearch 查询镜像 [rootlocalhost elk]# docker search elasticsearch NAME DESCRIPTION STARS OFFICIAL AUTOMATED elasticsearch …

MySQL 索引原理以及 SQL 优化

索引 索引&#xff1a;一种有序的存储结构&#xff0c;按照单个或者多个列的值进行排序。索引的目的&#xff1a;提升搜索效率。索引分类&#xff1a; 数据结构 B 树索引&#xff08;映射的是磁盘数据&#xff09;hash 索引&#xff08;快速锁定内存数据&#xff09;全文索引 …

【Java EE初阶二十一】http的简单理解(二)

2. 深入学习http 2.5 关于referer Referer 描述了当前页面是从哪个页面跳转来的&#xff0c;如果是直接在地址栏输入 url(或者点击收藏夹中的按钮) 都是没有 Referer。如下图所示&#xff1a; HTTP 最大的问题在于"明文传输”,明文传输就容易被第三方获取并篡改. …

Android反编译工具及使用说明

文章目录 一、反编译常用的工具二、反编译工具的下载安装及使用1. Apktool下载使用 2. dex2jar下载使用 3. jd-gui下载使用 一、反编译常用的工具 Apktool 获取apk里的资源文件、配置文件、清单文件、lib文件夹下的so包等等dex2jar 将apk反编译成java源码&#xff0c;及dex文件…

Stable Diffusion 绘画入门教程(webui)-ControlNet(姿态预处理器openpose)

本片文章接着上篇文章ControlNet介绍他的控制类型&#xff0c;本篇介绍的预处理器为openpose 预处理器&#xff1a;openpose 模型&#xff1a;control_v11p_sd15_openpose 没下载模型的看上篇文章去下载一下哦&#xff0c;不然用不了 文章目录 一、干什么用的二、详细用法1、选…