【数据结构】哈希表的开散列和闭散列模拟实现

哈希思想

在顺序和树状结构中,元素的存储与其存储位置之间是没有对应关系,因此在查找一个元素时,必须要经过多次的比较。

顺序查找的时间复杂度为0(N),树的查找时间复杂度为log(N)。

我们最希望的搜索方式:通过元素的特性,不需要对比查找,而是直接找到某个元素。

这一个通过key与存储位置建立一一的思想就是hash思想。

哈希表就是基于哈希思想的一种具体实现。哈希表也叫散列表,是一种数据结构。无论有多少条数据,插入和查找的时间复杂度都是O(1),因此由于其极高的效率,被广泛使用。

建立映射关系:
例如集合{8,5,6,3,7,2,1,0}

key为每个元素的值,capaticy为哈希表元素的容量。

357801d7e27342f283f999b121998957.png

映射过程:
元素8   key=8  8%10=8 映射在数组下标为第8的位置上

元素7   映射在下标为7的位置上

  1. 直接定值法:(关键数范围集中,量不大的时候)关键字和存储位置是一一对应,不存在哈希冲突
  2. 除留余数法:(关键字很分散,量很大)关键字和存储位置是一对多的关系,存在哈希冲突

哈希冲突

对于两个数据元素的关键字 eq?k_%7Bi%7D 和 eq?k_j%7B%7D (i != j),有 eq?k_%7Bi%7D != eq?k_j%7B%7D ,但有:Hash(eq?k_%7Bi%7D) == Hash(eq?k_j%7B%7D),即:不同关键字通过相同哈希函数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

例如上述的举例:
key的值为 18  15的时候

hashi计算的方法得出 需要映射到8 和5的位置上,但是8 和5的位置已经存在·其它值。这就产生了冲突


哈希冲突的解决

1.开放定址法(闭散列)

a:线性探测

        如果发生冲突,就往后一次一步寻找为空的位置。

b:二次探测

        发生冲突,每次往后走俩步,寻找没有冲突的位置。

线性探测的缺点:容易产生成片的冲突

二次探测的缺点:虽然解决了容易产生成片冲突,但是空间利用率也不高

2.开散列

又称开链法、哈希桶,计算如果产生了哈希冲突,就以链表的形式将冲突的值链接起来。

dee00f98d1f640ae8b8c56f3fb446b5e.png


哈希表的闭散列实现

闭散列哈希中的,每个位置不仅需要存储数据,还需要标注状态,方便查找删除。

enum State { EMPTY, EXIST, DELETE };

标记状态的意义?

在一个哈希表中,如果需要存放,我们会计算出key映射位置。如果key映射位置被占走,会往后继续寻找到删除/空的位置放置。

在查找时,在映射位置找不到时,需要往后寻找,我们不可能一直往后寻找O(N).,那就失去哈希表的价值,当我们遇到存在/删除位置时继续往后寻找,直到找到空位置,说明没有该元素。

因此在存储时,每个位置都必须有状态和数据

		struct Elem{pair<K, V> _val;State _state;};

框架

哈希表还需要维持容量的问题。因此需要_size表示实际存放,来维持负载因子

template<class K,class V> //k—v结构
class HashTable	
{
public:
//...
private:vector<Elem> _ht;size_t _size;		//实际存储size_t _totalSize;  // 哈希表中的所有元素:有效和已删除, 扩容时候要用到
};


哈希表的插入

  1. 根据K查找是为空,是则返回false
  2. 计算负载因子,是否需要扩容
  3. 插入新元素
  4. 更新位置状态,有效数目增加

扩容的方法

  • 开新的哈希表(默认空间为原来的2倍)
  • 遍历旧表,调用哈希表的插入。
  • 交换俩个表。

		// 插入bool Insert(const pair<K, V>& val){if (Find(val.first) != -1)return false;//负载因子为7时,扩容if ((_size * 10) / _ht.size() == 7){size_t newsize = _ht.size() * 2;HashTable<K, V>newht;newht._ht.resize(newsize);//遍历旧表for (size_t i = 0; i < _ht.size(); i++){if (_ht[i]._state == EXIST)newht.Insert(_ht[i]._val);}_ht.swap(newht._ht);}//出入新元素size_t hashi = HashFunc(val.first);while (_ht[hashi]._state == EXIST){++hashi;hashi %= _ht.size();}_ht[hashi]._val = val;_ht[hashi]._state = EXIST;++_size;++_totalSize;return true;}

哈希表的查找

通过hash函数映射到hashi,往后一直比对,遇到存在比对,不是要找的val就往后需要,遇到删除也往后对比。直到遇到空返回。

		// 查找size_t Find(const K& key){size_t hashi = HashFunc(key);while (_ht[hashi]._state != EMPTY){if (_ht[hashi]._state == EXIST&& _ht[hashi]._val.first == key){return hashi;}++hashi;hashi %= _ht.size();}return -1;}


哈希表的删除

删除是比较简单,是一种伪删除,不需要对数据清楚,只需要修改状态为删除,减少有效个数

  1. 调用find,没有则返回flase
  2. 修改为状态
  3. 减少个数
		bool Erase(const K& key){int hashi = Find(key);if (hashi == -1)	return false;_ht[hashi]._state = DELETE;--_size;return true;}

这三部分就是闭散列的主体结构。需要维持负载因子和状态。

Gitee: 闭散列哈希代码


哈希桶

开散列哈希表就不要需要状态的使用,是由一个链表的数组构成。

就是一排一排的桶。想要查找数据,只需要映射位置,在桶中寻找,是O(1)的放法.

特别极端情况下可能达到O(N)。

框架

底层可以依赖单链表,只需要简单的头插即可。

链表的结点:需要包含下一个位置的指针,需要包含pair键值对

	template<class K, class V>struct HashNode{pair<K, V>_kv;HashNode<K, V>* _next;//构造HashNode(const pair<K, V>& kv):_kv(kv), _next(nullptr){}};

同样需要记录表中有效元素的个数,但是一般情况下,负载因子在80%-90%效率最大

我们为了简单实现,在100%时才扩容。 

template<class K, class V>
class HashTable
{
public://...
private:vector<Node*> _table; //哈希表size_t _n = 0; //哈希表中的有效元素个数
};

哈希桶的插入

  1. 检查是否为已经存在的Key
  2. 检查负载因子,为1就扩容
  3. 往hashi位置头插插入
  4. 修改个数

扩容的方法

  1. rasize一个二倍数量的原表
  2. 遍历旧表,将一个元素从链表的头取下,插入到新表中的hashi位置上。注意保存下一个位置!
  3. 交换俩张表

		bool Inset(const pair<K, V>& kv){if (Find(kv.first)){return false;}hash hf;//扩容if (_tables.size() == _n){size_t newsize = _tables.size() * 2;vector<Node*> newtable;newtable.resize(newsize, nullptr);for (size_t i = 0; i < (_tables.size()); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t hashi = hf(cur->_kv.first % newtable.size());//头插cur->_next = newtable[hashi];newtable[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newtable);}size_t hashi = hf(kv.first) % _tables.size();Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;_n++;return true;}

哈希桶的查找

  • 计算hashi
  • 遍历单链表
  • 为空则返回flase
		Node* Find(const K& key){hash fc;size_t hashi = fc(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key)return cur;cur=cur->_next;}return nullptr;}

哈希桶的删除

删除需要主要是删除的中间结点还是首结点

需要保存父亲结点

和单链表的删除基本一致

		bool Erase(const K& key){hash fc;size_t hashi = fc(key) % _tables.size();Node* cur = _tables[hashi];Node* prev = nullptr;while (cur){//找到了if (cur->_kv.first == key){//头删if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true;}}return false;}

Gitee: 开散列哈希桶代码


关于仿函数HashFunc

仿函数是一种回调,可以定义出函数对象。

是对不同类型转化为key,之前在位图就已经介绍,本文用的是BDK算法

对于string字符串类型会有存在冲突,但是可以通过不同的算法映射到不到的位置上,通过几个值的比对能减少失误的概率。

template<class K>
struct DefaultHash
{size_t operator()(const K& key){return (size_t)key;}
};//特化 针对字符串
template<>
struct DefaultHash<string>
{size_t operator()(const string& key){//BKDRsize_t hash = 0;for (auto ch : key){hash = hash * 131 + ch;}return hash;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2780151.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

python coding with ChatGPT 打卡第20天| 二叉搜索树:搜索、验证、最小绝对差、众数

相关推荐 python coding with ChatGPT 打卡第12天| 二叉树&#xff1a;理论基础 python coding with ChatGPT 打卡第13天| 二叉树的深度优先遍历 python coding with ChatGPT 打卡第14天| 二叉树的广度优先遍历 python coding with ChatGPT 打卡第15天| 二叉树&#xff1a;翻转…

第72讲后台管理Container布局实现

新建layout目录 登录成功后&#xff0c;跳转layout布局容器页面 login页面&#xff1a; 导入router import router from "/router";登录成功&#xff0c;跳转后台管理页面 选用布局容器&#xff1a; <template><div class"common-layout">…

浅谈人工智能之深度学习~

目录 前言&#xff1a;深度学习的进展 一&#xff1a;深度学习的基本原理和算法 二&#xff1a;深度学习的应用实例 三&#xff1a;深度学习的挑战和未来发展方向 四&#xff1a;深度学习与机器学习的关系 五&#xff1a;深度学习与人类的智能交互 悟已往之不谏&#xff0…

寒假思维训练day20

更新一道1600的反向贪心 题意&#xff1a; 有n场比赛&#xff0c;且小明的智商是m&#xff0c;每场比赛需要的智商是,当时, 可以直接看题&#xff0c;当时&#xff0c;需要智商m减1才能看这道题&#xff0c;当智商为0不能继续往下看题&#xff0c;问最多能看多少题 题解&#x…

UR10+gazebo+moveit吸盘抓取搬运demo

使用ur10gazebo开发了一个简易吸盘抓取箱子码垛的仿真过程&#xff0c;机械臂控制使用的是moveit配置。 本博客对部分关键的代码进行解释。 代码运行环境&#xff1a;支持ubuntu16、 18、 20&#xff0c; ros版本是ros1&#xff08;经过测试&#xff09;。 1、搬运场景 场景的…

视频讲解:优化柱状图

你好&#xff0c;我是郭震 AI数据可视化 第三集&#xff1a;美化柱状图&#xff0c;完整视频如下所示&#xff1a; 美化后效果前后对比&#xff0c;前&#xff1a; 后&#xff1a; 附完整案例源码&#xff1a; util.py文件 import platformdef get_os():os_name platform.syst…

Matlab图像处理——图像边缘检测方法(算子)

1.edge函数语法 BW edge(I) BW edge(I,method) BW edge(I,method,threshold) BW edge(I,method,threshold,direction) BW edge(___,"nothinning") BW edge(I,method,threshold,sigma) BW edge(I,method,threshold,h) BW edge(I) 返回二值图像 BW&#xff0…

如何编写高效的可复用程序

子程序、FB 、FC等的相关内容还可以查看下面文章链接&#xff1a; https://rxxw-control.blog.csdn.net/article/details/124524693https://rxxw-control.blog.csdn.net/article/details/124524693 1、FB和FC编程的优点 待续.....

第4集《佛说四十二章经》

请大家打开讲议第四面&#xff0c;第一章&#xff0c;出家证果。 佛言&#xff1a;辞亲出家&#xff0c;识心达本&#xff0c;解无为法&#xff0c;名曰沙门。 在经文的刚开始啊&#xff0c;佛陀把修道的沙门提出了两个基本的条件&#xff1a; 第一个是辞亲出家&#xff0c;…

C#,卢卡斯数(Lucas Number)的算法与源代码

1 卢卡斯数&#xff08;Lucas Number&#xff09; 卢卡斯数&#xff08;Lucas Number&#xff09;是一个以数学家爱德华卢卡斯&#xff08;Edward Lucas&#xff09;命名的整数序列。爱德华卢卡斯既研究了这个数列&#xff0c;也研究了有密切关系的斐波那契数&#xff08;两个…

Canvas笔记05:像素操作,可以对图像进行像素级别控制和处理

hello&#xff0c;我是贝格前端工场&#xff0c;最近在学习canvas&#xff0c;分享一些canvas的一些知识点笔记&#xff0c;本期分享canvas像素操作的知识&#xff0c;欢迎老铁们一同学习&#xff0c;欢迎关注&#xff0c;如有前端项目需要协助可私聊。 一、什么是像素操作 Ca…

C++提高编程(黑马笔记)

C提高编程 模版 特点&#xff1a; 只是一个框架&#xff0c;不可以直接使用通用并不是万能的 泛型主要利用模版 函数模版 语法&#xff1a; template<typename T> 函数# include<iostream> using namespace std;template<typename T> void MySwap(T&a…

分享66个时间日期JS特效,总有一款适合您

分享66个时间日期JS特效&#xff0c;总有一款适合您 66个时间日期JS特效下载链接&#xff1a;https://pan.baidu.com/s/1niQUpDSs10gfGYKYnEgKRg?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;…

Solidworks:平面草图练习

继续练习平面草图&#xff0c;感觉基本入门了。

ChatGPT偷懒、变慢的罪魁祸首竟然是它?!系统提示词塞满垃圾!

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…

gtkmm4 应用程序使用 CSS 样式

文章目录 前言css选择器css文件示例源代码效果动态设置css-classes 前言 程序样式和代码逻辑分离开 使代码逻辑更可观 css选择器 Cambalache提供了两种css-classes 相当于css里的类名:class“类名”css-name 相当于css里的标签名:spin div p 啥的 如上我设置了这个按钮控件的…

前端JavaScript篇之异步编程的实现方式?

目录 异步编程的实现方式&#xff1f;1. 回调函数2. Promise3. Async/Await4. Generator 异步编程的实现方式&#xff1f; 异步编程是处理需要等待的操作的一种方式&#xff0c;比如读取文件、发送网络请求或处理大量数据。在JavaScript中&#xff0c;有几种常见的实现方式&am…

15 ABC基于状态机的按键消抖原理与状态转移图

1. 基于状态机的按键消抖 1.1 什么是按键&#xff1f; 从按键结构图10-1可知&#xff0c;按键按下时&#xff0c;接点&#xff08;端子&#xff09;与导线接通&#xff0c;松开时&#xff0c;由于弹簧的反作用力&#xff0c;接点&#xff08;端子&#xff09;与导线断开。 从…

一键打造属于自己漏扫系统

0x01 工具介绍 本系统是对Web中间件和Web框架进行自动化渗透的一个系统,根据扫描选项去自动化收集资产,然后进行POC扫描,POC扫描时会根据指纹选择POC插件去扫描,POC插件扫描用异步方式扫描.前端采用vue技术,后端采用python fastapi。 0x02 安装与使用 1、Docker部署环境 编译…

MongoDB 与 mongo-express docker 安装

MongoDB 和 mongo-express 与 MySQL 不同&#xff0c;MongoDB 为 NoSQL 数据库&#xff0c;MongoDB 中没有 table &#xff0c;schema 概念&#xff0c;取而代之的 collection&#xff0c;其中 collection 存储的为 BSON 格式&#xff0c;是一种类似于 JSON 的用于存储 k-v 键…