《动手学深度学习(PyTorch版)》笔记8.5

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,同时对于书上部分章节也做了整合。

Chapter8 Recurrent Neural Networks

8.5 Implementation of RNN from Scratch

8.5.1 Model Defining

import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
import matplotlib.pyplot as pltbatch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)#每个词元都表示为一个数字索引,但将这些索引直接输入神经网络可能会使学习变得困难。
#最简单的表示称为独热编码(one-hot encoding),即将每个索引映射为相互不同的单位向量:
#假设词表中不同词元的数目为N(即len(vocab)),词元索引的范围为0到N-1。
#如果词元的索引是整数i,那么我们将创建一个长度为N的全0向量,并将第i处的元素设置为1。
F.one_hot(torch.tensor([0, 2]), len(vocab))#索引为0和2的独热向量X = torch.arange(10).reshape((2, 5))
print(F.one_hot(X.T, 28).shape)#形状为(时间步数,批量大小,词表大小)def get_params(vocab_size, num_hiddens, device):num_inputs = num_outputs = vocab_sizedef normal(shape):return torch.randn(size=shape, device=device) * 0.01# 隐藏层参数W_xh = normal((num_inputs, num_hiddens))W_hh = normal((num_hiddens, num_hiddens))b_h = torch.zeros(num_hiddens, device=device)# 输出层参数W_hq = normal((num_hiddens, num_outputs))b_q = torch.zeros(num_outputs, device=device)# 附加梯度params = [W_xh, W_hh, b_h, W_hq, b_q]for param in params:param.requires_grad_(True)return paramsdef init_rnn_state(batch_size, num_hiddens, device):return (torch.zeros((batch_size, num_hiddens), device=device), )def rnn(inputs, state, params):# inputs的形状:(时间步数量,批量大小,词表大小)W_xh, W_hh, b_h, W_hq, b_q = paramsH, = stateoutputs = []# X的形状:(批量大小,词表大小)for X in inputs:H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)Y = torch.mm(H, W_hq) + b_qoutputs.append(Y)return torch.cat(outputs, dim=0), (H,)class RNNModelScratch: #@save"""从零开始实现的循环神经网络模型"""def __init__(self, vocab_size, num_hiddens, device,get_params, init_state, forward_fn):self.vocab_size, self.num_hiddens = vocab_size, num_hiddensself.params = get_params(vocab_size, num_hiddens, device)self.init_state, self.forward_fn = init_state, forward_fndef __call__(self, X, state):X = F.one_hot(X.T, self.vocab_size).type(torch.float32)return self.forward_fn(X, state, self.params)def begin_state(self, batch_size, device):return self.init_state(batch_size, self.num_hiddens, device)num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()), state)
print(Y.shape, len(new_state), new_state[0].shape)#隐状态形状不变,仍为(批量大小,隐藏单元数)def predict_ch8(prefix, num_preds, net, vocab, device):  #@save"""在prefix后面生成新字符"""state = net.begin_state(batch_size=1, device=device)outputs = [vocab[prefix[0]]]get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))#get_input()将outputs列表中的最后一个字符的整数标识输入网络for y in prefix[1:]:  # 预热期_, state = net(get_input(), state)outputs.append(vocab[y])for _ in range(num_preds):  # 预测num_preds步y, state = net(get_input(), state)outputs.append(int(y.argmax(dim=1).reshape(1)))return ''.join([vocab.idx_to_token[i] for i in outputs])predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())#由于还没有训练网络,会生成荒谬的预测结果

8.5.2 Gradient Clipping

对于长度为 T T T的序列,在迭代中计算这 T T T个时间步上的梯度,将会在反向传播过程中产生长度为 O ( T ) \mathcal{O}(T) O(T)的矩阵乘法链。当 T T T较大时,它可能导致数值不稳定,例如可能导致梯度爆炸或梯度消失。假定在向量形式的 x \mathbf{x} x中,或者在小批量数据的负梯度 g \mathbf{g} g方向上,使用 η > 0 \eta > 0 η>0作为学习率时,在一次迭代中,我们将 x \mathbf{x} x更新为 x − η g \mathbf{x} - \eta \mathbf{g} xηg。如果我们进一步假设目标函数 f f f表现良好,即函数 f f f在常数 L L L利普希茨连续(Lipschitz continuous),也就是说,对于任意 x \mathbf{x} x y \mathbf{y} y我们有:

∣ f ( x ) − f ( y ) ∣ ≤ L ∥ x − y ∥ . |f(\mathbf{x}) - f(\mathbf{y})| \leq L \|\mathbf{x} - \mathbf{y}\|. f(x)f(y)Lxy∥.

在这种情况下,我们可以安全地假设:如果我们通过 η g \eta \mathbf{g} ηg更新参数向量,则

∣ f ( x ) − f ( x − η g ) ∣ ≤ L η ∥ g ∥ , |f(\mathbf{x}) - f(\mathbf{x} - \eta\mathbf{g})| \leq L \eta\|\mathbf{g}\|, f(x)f(xηg)Lηg,

这意味着变化不会超过 L η ∥ g ∥ L \eta \|\mathbf{g}\| Lηg的,坏的方面是限制了取得进展的速度;好的方面是限制了事情变糟的程度。有时梯度可能很大,使得优化算法可能无法收敛,我们可以通过降低 η \eta η的学习率来解决这个问题。但是如果很少得到大的梯度,一个替代方案是通过将梯度 g \mathbf{g} g投影回给定半径(例如 θ \theta θ)的球来截断梯度 g \mathbf{g} g,如下式:

g ← min ⁡ ( 1 , θ ∥ g ∥ ) g . \mathbf{g} \leftarrow \min\left(1, \frac{\theta}{\|\mathbf{g}\|}\right) \mathbf{g}. gmin(1,gθ)g.

上式使得梯度范数永远不会超过 θ \theta θ,并且更新后的梯度完全与 g \mathbf{g} g的原始方向对齐。它还有一个作用,即限制任何给定的小批量数据(以及其中任何给定的样本)对参数向量的影响,这赋予了模型一定程度的稳定性。

def grad_clipping(net, theta):  #@save"""截断梯度"""if isinstance(net, nn.Module):params = [p for p in net.parameters() if p.requires_grad]else:params = net.paramsnorm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))if norm > theta:for param in params:param.grad[:] *= theta / norm

8.5.3 Training

下面训练模型的方式与3.6有三个不同之处:

  1. 序列数据的不同采样方法(随机采样和顺序分区)将导致隐状态初始化的差异。
    使用顺序分区时,只在每个迭代周期的开始位置初始化隐状态,由于下一个小批量数据中的第 i i i个子序列样本与当前第 i i i个子序列样本相邻,因此当前小批量数据最后一个样本的隐状态将用于初始化下一个小批量数据第一个样本的隐状态。这样,存储在隐状态中的序列的历史信息可以在一个迭代周期内流经相邻的子序列,然而在任何一点隐状态的计算,都依赖于同一迭代周期中前面所有的小批量数据,这使得梯度计算变得复杂。为了降低计算量,在处理任何一个小批量数据之前,我们先分离梯度,使得隐状态的梯度计算总是限制在一个小批量数据的时间步内。当使用随机抽样时,需要为每个迭代周期重新初始化隐状态因为每个样本都是在一个随机位置抽样的。
  2. 在更新模型参数之前截断梯度,目的是使得即使训练过程中某个点上发生了梯度爆炸,也能保证模型收敛。
  3. 用困惑度来评价模型,确保了不同长度的序列具有可比性。

代码如下:

def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):#@save"""训练网络一个迭代周期"""state, timer = None, d2l.Timer()metric = d2l.Accumulator(2)  # 训练损失之和,词元数量for X, Y in train_iter:if state is None or use_random_iter:# 在第一次迭代或使用随机抽样时初始化statestate = net.begin_state(batch_size=X.shape[0], device=device)else:if isinstance(net, nn.Module) and not isinstance(state, tuple):# state对于nn.GRU是个张量state.detach_()else:# state对于nn.LSTM或对于我们从零开始实现的模型是个张量for s in state:s.detach_()y = Y.T.reshape(-1)X, y = X.to(device), y.to(device)y_hat, state = net(X, state)l = loss(y_hat, y.long()).mean()if isinstance(updater, torch.optim.Optimizer):updater.zero_grad()l.backward()grad_clipping(net, 1)updater.step()else:l.backward()grad_clipping(net, 1)# 因为已经调用了mean函数updater(batch_size=1)metric.add(l * y.numel(), y.numel())#y.numel()返回y中元素的数量return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()def train_ch8(net, train_iter, vocab, lr, num_epochs, device,use_random_iter=False):#@save"""训练模型"""loss = nn.CrossEntropyLoss()animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',legend=['train'], xlim=[10, num_epochs])# 初始化if isinstance(net, nn.Module):updater = torch.optim.SGD(net.parameters(), lr)else:updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)# 训练和预测for epoch in range(num_epochs):ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)if (epoch + 1) % 10 == 0:print(predict('time traveller'))animator.add(epoch + 1, [ppl])print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')print(predict('time traveller'))print(predict('traveller'))num_epochs, lr = 500, 1#使用顺序分区
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())
#使用随机抽样
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(),use_random_iter=True)
plt.show()

顺序分区训练结果:
在这里插入图片描述

随机抽样训练结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2779972.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Java学习-常用API(二)

Math类及其常用API: 演示: StringBuilder的认识及其常用方法: StringBuilder支持链式编程 StringBuilder sbnew StringBuilder();sb.append(12).append.(“itHeima”&am…

KingSCADA实现按钮点击效果

哈喽,你好啊,我是雷工! 在做SCADA项目的时候,按钮是不可缺少的功能,但软件自带的按钮太丑,已经无法满足现如今客户对界面美观度的要求。 这时候就需要UI小姐姐设计美观大气的SCADA界面,但UI设计…

C++入门学习(二十七)跳转语句—break语句

1、与switch语句联合使用 C入门学习&#xff08;二十三&#xff09;选择结构-switch语句-CSDN博客 #include <iostream> #include <string> using namespace std;int main() { int number;cout<<"请为《斗萝大路》打星(1~5※)&#xff1a;" &…

【51单片机】串口通信实验(包括波特率如何计算)

目录 串口通信实验通信的基本概念串行通信与并行通信异步通信与同步通信单工、 半双工与全双工通信通信速率 51单片机串口介绍串口介绍串口通信简介串口相关寄存器串口工作方式方式0方式1方式 2 和方式 3 串口的使用方法&#xff08;计算波特率&#xff09; 硬件设计软件设计1、…

Junit常用注解

注解是方法的“标签” 说明每个方法的“职责” Q:总共有那些注解? 参见官方的API文档 0.常用主机及其特点 BeforeClass 只会执行一次必须用static修饰常用来初始化测试需要的变量 Before 会执行多次&#xff08;只要写一次&#xff09;在每个Test执行执行之前执行可以和…

VTK 三维场景的基本要素(相机) vtkCamera

观众的眼睛好比三维渲染场景中的相机&#xff0c;在VTK中用vtkCamera类来表示。vtkCamera负责把三维场景投影到二维平面&#xff0c;如屏幕&#xff0c;相机投影示意图如下图所示。 1.与相机投影相关的要素主要有如下几个&#xff1a; 1&#xff09;相机位置: 相机所处的位置…

文件的操作(上)

上一期代码题中我们补充一下&#xff0c;代码1中我们创建了一个指针变量来接收我们开辟的空间的首地址&#xff0c;出了函数只是变量被销毁&#xff0c;但是我们在堆区申请的空间却不会自己销毁&#xff0c;这样容易造成内存泄漏&#xff0c;只有等整个程序结束&#xff0c;才会…

[2024]常用的pip指令

[2024]常用的pip指令 HI&#xff0c;这里是肆十二&#xff0c;好久不见&#xff0c;大家&#xff01; 新年好&#xff01; pip是Python的包管理工具&#xff0c;它可以用来安装、升级、卸载Python包。以下是一些常用的pip指令&#xff1a; 安装包&#xff1a; bash复制代码…

C#,泰波拿契数(Tribonacci Number)的算法与源代码

1 泰波拿契数&#xff08;Tribonacci Number&#xff09; 泰波拿契数&#xff08;Tribonacci Number&#xff09;是斐波那契的拓展。 泰波拿契数 (Tribonacci Number) 即把费波拿契数 (Fibonacci Number) 的概念推广至三个数。 2 计算结果 3 源程序 using System; namespace…

通过平扫CT实现胰腺癌早筛(平扫CT+AI)

Large-scale pancreatic cancer detection via non-contrast CT and deep learning - PubMed (nih.gov) 实验团队&#xff1a;海军军医大学第一附属医院&#xff08;上海长海医院&#xff09;&#xff0c;放射诊断科曹凯主治医生为共同第一作者&#xff0c;邵成伟、陆建平等教…

Linux笔记之Docker进行镜像备份与迁移

Linux笔记之Docker进行镜像备份与迁移 ——2024-02-11 code review! 文章目录 Linux笔记之Docker进行镜像备份与迁移1. 导出容器文件系统为 tar 归档文件2. 将 tar 归档文件导入为新的 Docker 镜像3. 运行新的 Docker 镜像并创建容器 1. 导出容器文件系统为 tar 归档文件 要导…

Windows快捷键大全(包含语音输入、剪切板历史快捷键)

最近发现了微软官网上给出的快捷键大全&#xff0c;并且使用了其中几个新的键盘快捷键&#xff08;语音输入、剪切板历史&#xff09;&#xff0c;确实方便快捷&#xff0c;所以写个博客记录分享一下。 注&#xff1a;windows快捷键大全微软官方已经给出&#xff0c;此处不再赘…

每日一练:LeeCode-654、最大二叉树【二叉树+DFS+分治】

本文是力扣LeeCode-654、最大二叉树【二叉树DFS分治】 学习与理解过程&#xff0c;本文仅做学习之用&#xff0c;对本题感兴趣的小伙伴可以出门左拐LeeCode。 给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点&#xff0c;其…

OpenCV-36 多边形逼近与凸包

目录 一、多边形的逼近 二、凸包 一、多边形的逼近 findContours后的轮廓信息countours可能过于复杂不平滑&#xff0c;可以用approxPolyDP函数对该多边形曲线做适当近似&#xff0c;这就是轮廓的多边形逼近。 apporxPolyDP就是以多边形去逼近轮廓&#xff0c;采用的是Doug…

git合入的parents和child

最近在管理代码&#xff0c;有2的权限&#xff0c;看到一些以前1看不到的东西。 有时候会遇到多个人基于同一节点提交代码&#xff0c;那就要选择先合入和后合入&#xff0c;如果这多人修改到同一个文件同一个地方&#xff0c;就可能产生冲突&#xff0c;一般要避免这种情况出…

Kotlin和Java 单例模式

Java 和Kotlin的单例模式其实很像&#xff0c;只是Kotlin一部分单例可以用对象类和委托lazy来实现 Java /*** 懒汉式&#xff0c;线程不安全*/ class Singleton {private static Singleton instance;private Singleton() {}public static Singleton getInstance() {if (insta…

Unity学习笔记(零基础到就业)|Chapter04:C#篇补充到Unity篇过渡

Unity学习笔记&#xff08;零基础到就业&#xff09;&#xff5c;Chapter02:C#篇补充到Unity篇过渡 前言C#总结补充1.值类型和引用类型有什么区别&#xff0c;他们在值的传递上分别有怎样的特性2.string是引用类型&#xff0c;但是他对外表现出值类型的特性&#xff0c;为什么&…

联想thinkpad-E450双系统升级记

早期笔记本联想thinkpad-E450双系统 大约16年花4000多大洋&#xff0c;买了一台thinkpad-L450屏幕是16寸本&#xff0c;有AMD独立显卡&#xff0c;i5cpu&#xff0c;4G内存。 . 后来加了一个同型号4G内存组成双通道&#xff0c; . 加了一个三星固态500G&#xff0c; . 换了一个…

【leetcode热题100】反转链表 II

给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输出&#xff1a;[1,4,3,2…

Java 基于微信小程序的电子商城购物系统

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…