【十五】【C++】list的简单实现

list 的迭代器解引用探究

 
/*list的迭代器解引用探究*/
#if 1
#include <list>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;class Date {private:int _year;int _month;int _day;public:Date(): _year(2024), _month(1), _day(1){}void Show() {cout << _year << "-" << _month << "-" << _day << endl;}};
void TestList8() {list<Date> L1;L1.push_back(Date());L1.push_back(Date());L1.push_back(Date());L1.push_back(Date());auto it1=L1.begin();while(it1!=L1.end()){it1->Show();it1++;}list<int> L2;L2.push_back(1);L2.push_back(2);L2.push_back(3);L2.push_back(4);auto it2=L2.begin();while(it2!=L2.end()){cout<<*it2<<endl;it2++;}}int main() {TestList8();}
#endif

这段代码主要展示了如何在 C++ 中使用 std::list 容器来存储和遍历自定义类型(Date 类)的对象以及基本数据类型(int)的值。程序定义了一个 Date 类,用于表示日期,并提供了一个 Show 成员函数来打印日期。然后,它在函数 TestList8 中创建了两个 std::list 容器:一个存储 Date 对象,另一个存储 int 值。通过迭代器遍历这些列表,并展示了如何访问和操作容器中的元素。

这段代码看似平平无奇,细心的小伙伴可能会发现,在遍历L1list对象的时候,it1->Show();这一行代码似乎有一点问题。it1迭代器底层是list结点的指针,it1->得到的结果应该是Date类型对象而不能直接访问Date类型对象的成员才对。如果it1底层指针存储的是节点中Date类型的对象的地址,那么it1->Show();就没有任何问题。

实际上list类中->底层会返回*it迭代器的地址,Ptr operator->(){return &(operator*()); },但即使返回了地址,我们还需要一个->才能访问Date的对象才对。正确的做法就变成了it1->->Show();这个样子。但是这样的代码可读性太差了,为了提高代码的可读性,编译器自动给我们添加一个->,使得我们仅仅使用it1->Show();这样的代码就可以完成实现。

代码实现

 
#include<iostream>
using namespace std;
#include<algorithm>
namespace Mylist
{template<class T>struct ListNode{ListNode<T>* _next;ListNode<T>* _prev;T _value;ListNode(const T& value = T()): _next(nullptr), _prev(nullptr), _value(value){}};// 1. 封装迭代器对应的类template<class T, class Ref, class Ptr>struct ListIterator{typedef ListNode<T> Node;typedef Ref ItRef;typedef Ptr ItPtr;typedef ListIterator<T, Ref, Ptr> Self;public:ListIterator(Node* pNode = nullptr): _pNode(pNode){}//// 具有指针类似的操作Ref operator*(){return _pNode->_value;}Ptr operator->(){return &(operator*());}// 移动Self& operator++(){_pNode = _pNode->_next;return *this;}Self operator++(int){Self temp(*this);_pNode = _pNode->_next;return temp;}Self& operator--(){_pNode = _pNode->_prev;return *this;}Self operator--(int){Self temp(*this);_pNode = _pNode->_prev;return temp;}///// 比较bool operator!=(const Self& s)const{return _pNode != s._pNode;}bool operator==(const Self& s)const{return _pNode == s._pNode;}Node* _pNode;};// 反向迭代器:就是对正向迭代器的包装template<class Iterator>struct ListReverseIterator{// 静态成员变量也可以通过类名::静态成员变量名称// typedef Iterator::ItRef Ref;  编译报错// 编译器无法在编译时无法确定ItRef是静态成员变量 还是 类型// 需要显式告诉编译器ItRef就是Iterator类中的类型// typenametypedef typename Iterator::ItRef Ref;typedef typename Iterator::ItPtr Ptr;typedef ListReverseIterator<Iterator> Self;public:ListReverseIterator(Iterator it): _it(it){}Ref operator*(){Iterator temp(_it);--temp;return *temp;}Ptr operator->(){return &(operator*());}Self& operator++(){--_it;return *this;}Self operator++(int){Self temp(*this);--_it;return temp;}Self& operator--(){++_it;return *this;}Self operator--(int){Self temp(*this);++_it;return temp;}bool operator!=(const Self& rit)const{return _it != rit._it;}bool operator==(const Self& rit)const{return _it == rit._it;}Iterator _it;};template<class T>class list{typedef ListNode<T> Node;// 2. 在容器中给迭代器类型取别名---publicpublic:typedef ListIterator<T, T&, T*> iterator;typedef ListIterator<T, const T&, const T*> const_iterator;typedef ListReverseIterator<iterator> reverse_iterator;typedef ListReverseIterator<const_iterator> const_reverse_iterator;public:// 注意:list的迭代器一定不能是原生态的指针// vector之所以可以,因为vector底层是连续空间// 如果指针指向连续的空间,对指针++/--,该指针就可以移动到下一个/前一个位置// 但是list不行,因为链表中的节点是通过next和prev指针组织起来的,不一定连续// 如果将list的迭代器设置为原生态指针,++it/--it没有意义// typedef Node* iterator;  // ???public:// 构造list(){CreateHead();}list(int n, const T& value = T()){CreateHead();for (int i = 0; i < n; ++i){push_back(value);}}template<class Iterator>list(Iterator first, Iterator last){CreateHead();while (first != last){push_back(*first);++first;}}list(const list<T>& L){CreateHead();auto it = L.cbegin();while (it != L.cend()){push_back(*it);++it;}}list<T>& operator=(list<T> L){this->swap(L);return *this;}~list(){clear();delete _head;_head = nullptr;}//// 迭代器// 3. 增加begin和end的方法iterator begin(){/*iterator ret(_head->_next);return ret;*/return iterator(_head->_next);}iterator end(){return iterator(_head);}const_iterator cbegin()const{/*iterator ret(_head->_next);return ret;*/return const_iterator(_head->_next);}const_iterator cend()const{return const_iterator(_head);}reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}const_reverse_iterator crbegin()const{return const_reverse_iterator(cend());}const_reverse_iterator crend()const{return const_reverse_iterator(cbegin());}//// 容量size_t size()const{size_t count = 0;Node* cur = _head->_next;while (cur != _head){count++;cur = cur->_next;}return count;}bool empty()const{return _head == _head->_next;}void resize(size_t newsize, const T& value = T()){size_t oldsize = size();if (newsize <= oldsize){for (size_t i = newsize; i < oldsize; ++i){pop_back();}}else{for (size_t i = oldsize; i < newsize; ++i){push_back(value);}}}//// 元素访问T& front(){return *begin();}const T& front()const{//return _head->_next->_value;return *cbegin();}T& back(){return *(--end());}const T& back()const{// return _head->_prev->_value;return *(--cend());}///// 修改void push_front(const T& value){insert(begin(), value);}void pop_front(){erase(begin());}void push_back(const T& value){insert(end(), value);}void pop_back(){erase(--end());}iterator insert(iterator it, const T& value){Node* pos = it._pNode;Node* newNode = new Node(value);newNode->_next = pos;newNode->_prev = pos->_prev;newNode->_prev->_next = newNode;pos->_prev = newNode;return newNode;}iterator erase(iterator it){if (it == end())return end();Node* pos = it._pNode;Node* ret = pos->_next;pos->_prev->_next = pos->_next;pos->_next->_prev = pos->_prev;delete pos;return ret;}void clear(){auto it = begin();while (it != end()){it = erase(it);}}void swap(list<T>& L){std::swap(_head, L._head);}private:void CreateHead(){_head = new Node();_head->_next = _head;_head->_prev = _head;}private:Node* _head;};}void TestList1(){Mylist::list<int> L1;Mylist::list<int> L2(10, 5);int array[] = { 1, 2, 3, 4, 5 };Mylist::list<int> L3(array, array+sizeof(array)/sizeof(array[0]));Mylist::list<int> L4(L3);for (auto e : L3){cout << e << " ";}cout << endl;Mylist::list<int>::iterator it = L4.begin();while (it != L4.end()){cout << *it << " ";++it;}cout << endl;}void TestList2(){int array[] = { 1, 2, 3, 4, 5 };Mylist::list<int> L1(array, array + sizeof(array) / sizeof(array[0]));auto itL1 = L1.begin();*itL1 = 10;//    auto citL1 = L1.cbegin();//*citL1 = 100;cout << L1.front() << endl;cout << L1.back() << endl;cout << L1.size() << endl;const Mylist::list<int> L2(L1);
//    auto it = L2.cbegin();cout << L2.front() << endl;cout << L2.back() << endl;}void TestLst3(){Mylist::list<int> L;L.push_back(1);L.push_back(2);L.push_back(3);L.push_back(4);L.push_back(5);cout << L.size() << endl;L.push_front(0);for (auto e : L)cout << e << " ";cout << endl;L.pop_front();for (auto e : L)cout << e << " ";cout << endl;// find(L.begin(), L.end(), 4);
}void TestLst4(){Mylist::list<int> L;L.push_back(1);L.push_back(2);L.push_back(3);L.push_back(4);L.push_back(5);auto it = L.rbegin();while (it != L.rend()){cout << *it << " ";++it;}cout << endl;auto rit = L.crbegin();while (rit != L.crend()){cout << *rit << " ";++rit;}cout << endl;}
int main(){Mylist::list<int> L;L.push_back(1);L.push_back(2);L.push_back(3);L.push_back(4);L.push_back(5);auto it=L.begin();//    L.assign(10, 5);Mylist::list<int> L1(5,10);L = L1;while (it != L.end()){cout << *it << " ";++it;}}

ListNode 结构

 
    template<class T>struct ListNode{ListNode<T>* _next;ListNode<T>* _prev;T _value;ListNode(const T& value = T()): _next(nullptr), _prev(nullptr), _value(value){}};

ListNode 是一个结构体,用于表示链表中的一个节点。它包含指向下一个节点的指针 _next、指向前一个节点的指针 _prev 和存储的数据 _value。构造函数允许用一个值初始化节点,并默认设置前后节点为 nullptr

ListIterator

 
    template<class T, class Ref, class Ptr>struct ListIterator{typedef ListNode<T> Node;typedef Ref ItRef;typedef Ptr ItPtr;typedef ListIterator<T, Ref, Ptr> Self;public:ListIterator(Node* pNode = nullptr): _pNode(pNode){}//// 具有指针类似的操作Ref operator*(){return _pNode->_value;}Ptr operator->(){return &(operator*());}// 移动Self& operator++(){_pNode = _pNode->_next;return *this;}Self operator++(int){Self temp(*this);_pNode = _pNode->_next;return temp;}Self& operator--(){_pNode = _pNode->_prev;return *this;}Self operator--(int){Self temp(*this);_pNode = _pNode->_prev;return temp;}///// 比较bool operator!=(const Self& s)const{return _pNode != s._pNode;}bool operator==(const Self& s)const{return _pNode == s._pNode;}Node* _pNode;};

ListIterator 是一个迭代器类,支持对链表的正向遍历。它重载了操作符,以提供类似指针的行为。包括解引用 (operator*operator->)、迭代(operator++operator--)和比较(operator==operator!=)。ListIterator 使得用户可以通过迭代器遍历链表,访问或修改节点的值。

类模板参数:

 
    template<class T, class Ref, class Ptr>struct ListIterator{typedef ListNode<T> Node;typedef Ref ItRef;typedef Ptr ItPtr;typedef ListIterator<T, Ref, Ptr> Self;

我们在list类里面定义迭代器是这样定义的。typedef ListIterator<T, T&, T*> iterator;其中Ref用来接收T&Ptr用来接收T*

这三个模版参数的具体含义如下所示:

T: 数据类型,指定链表节点存储的数据的类型。

Ref: 引用类型,决定了解引用操作符 (operator*) 返回值的类型,可以是数据的引用,允许通过迭代器修改链表节点的值。

Ptr: 指针类型,指定通过迭代器访问成员时的指针类型,通常是数据的指针类型。

这里的三个模版参数可以理解为数据类型占位符,每一个参数都有其特定的含义以及对应的数据类型,当我们使用的时候,传入的参数会与对应模版参数意义相吻合。

类型定义:

Node: 代表链表节点的类型,使用了模板参数 T 来指定节点存储的数据类型。

ItRefItPtr: 分别代表迭代器的引用和指针类型,这些类型允许迭代器通过类似指针的方式操作数据。

Self: 代表迭代器自身的类型,用于实现链式调用和返回正确的迭代器类型。

成员变量

Node* _pNode;

_pNode: 指向当前迭代器所指向的链表节点的指针。

构造函数:

 
        ListIterator(Node* pNode = nullptr): _pNode(pNode){}

ListIterator(Node* pNode = nullptr): 允许通过给定一个链表节点的指针来构造迭代器。默认参数为 nullptr,允许创建一个不指向任何节点的迭代器。

解引用操作符重载:

 
        // 具有指针类似的操作Ref operator*(){return _pNode->_value;}Ptr operator->(){return &(operator*());}

operator*(): 解引用操作符,返回当前迭代器指向的节点中存储的数据的引用,允许读取或修改该数据。针对于内置类型。

operator->(): 成员访问操作符,提供对当前迭代器指向的节点中存储的数据成员的访问。针对于自定义类型。

->返回的是list元素中的地址,编译器自动帮我们添加了一个->使得我们可以通过list元素自定义类型的地址进行访问成员属性。

迭代器移动:

 
        // 移动Self& operator++(){_pNode = _pNode->_next;return *this;}Self operator++(int){Self temp(*this);_pNode = _pNode->_next;return temp;}Self& operator--(){_pNode = _pNode->_prev;return *this;}Self operator--(int){Self temp(*this);_pNode = _pNode->_prev;return temp;}

operator++(): 前缀递增操作符,使迭代器前进到链表的下一个节点,并返回当前迭代器的引用。

operator++(int): 后缀递增操作符,使迭代器前进到链表的下一个节点,返回迭代器递增前的副本。

operator--(): 前缀递减操作符,使迭代器后退到链表的前一个节点,并返回当前迭代器的引用。

operator--(int): 后缀递减操作符,使迭代器后退到链表的前一个节点,返回迭代器递减前的副本。

operator!=operator==: 比较操作符,分别用于判断两个迭代器是否不相等或相等,即它们是否指向同一个链表节点。

小结论:

通过测试我们发现,在list简单实现过程中,如果不显示定义operator*()operator->()重载,就没办法解引用迭代器,但在vector简单实现过程中,并不需要显示定义operator*()operator->()重载就可以完成解引用迭代器。

ListReverseIterator

 
     // 反向迭代器:就是对正向迭代器的包装template<class Iterator>struct ListReverseIterator{// 静态成员变量也可以通过类名::静态成员变量名称// typedef Iterator::ItRef Ref;  编译报错// 编译器无法在编译时无法确定ItRef是静态成员变量 还是 类型// 需要显式告诉编译器ItRef就是Iterator类中的类型// typenametypedef typename Iterator::ItRef Ref;typedef typename Iterator::ItPtr Ptr;typedef ListReverseIterator<Iterator> Self;public:ListReverseIterator(Iterator it): _it(it){}Ref operator*(){Iterator temp(_it);--temp;return *temp;}Ptr operator->(){return &(operator*());}Self& operator++(){--_it;return *this;}Self operator++(int){Self temp(*this);--_it;return temp;}Self& operator--(){++_it;return *this;}Self operator--(int){Self temp(*this);++_it;return temp;}bool operator!=(const Self& rit)const{return _it != rit._it;}bool operator==(const Self& rit)const{return _it == rit._it;}Iterator _it;};

ListReverseIterator 是一个反向迭代器类,对 ListIterator 进行了包装,使其能够以相反的顺序遍历链表。它通过改变迭代方向(即通过递减其底层正向迭代器)来实现反向遍历。反向迭代器同样重载了类似指针的操作。

模板参数Iterator

 
     // 反向迭代器:就是对正向迭代器的包装template<class Iterator>struct ListReverseIterator{// 静态成员变量也可以通过类名::静态成员变量名称// typedef Iterator::ItRef Ref;  编译报错// 编译器无法在编译时无法确定ItRef是静态成员变量 还是 类型// 需要显式告诉编译器ItRef就是Iterator类中的类型// typenametypedef typename Iterator::ItRef Ref;typedef typename Iterator::ItPtr Ptr;typedef ListReverseIterator<Iterator> Self;

ListReverseIterator是模板结构体,其模板参数Iterator代表它将要包装的正向迭代器的类型。

类型别名定义(typedef):

使用typedef typename Iterator::ItRef Ref;定义了一个类型别名Ref,它引用了正向迭代器中定义的ItRef类型。这里的typename关键字是必需的,因为Iterator::ItRef是一个依赖于模板参数的类型,编译器需要明确地被告知这是一个类型名。

类似地,PtrSelf别名分别为迭代器的指针类型和反向迭代器自身的类型。

构造函数:

 
        ListReverseIterator(Iterator it): _it(it){}

接受一个正向迭代器作为参数,并初始化内部的迭代器_it

解引用操作符重载:

 
         Ref operator*(){Iterator temp(_it);--temp;return *temp;}Ptr operator->(){return &(operator*());}

operator*:解引用操作符,返回当前迭代器前一个位置的元素的引用。这是因为反向迭代时,当前位置实际对应的是正向迭代器的前一个元素。

operator->:成员访问操作符,返回当前元素的指针。

反向迭代器是通过正向迭代器封装复用实现的,反向迭代器的rbegin对应正向迭代器的end,反向迭代器的rend对应正向迭代器的begin。反向迭代器中的operator*()解引用实际上是返回正向迭代器前一个位置的解引用。即创建一个临时的正向迭代器对象,这个正向迭代器对象进行--操作指向前一个位置,返回的是前一个位置的迭代器的解引用。因为*temp实际上返回的是list具体对象,temp出作用域消失,但是list中的具体对象不会消失。

->返回的是list元素中的地址,编译器自动帮我们添加了一个->使得我们可以通过list元素自定义类型的地址进行访问成员属性。

迭代器移动:

 
         Self& operator++(){--_it;return *this;}Self operator++(int){Self temp(*this);--_it;return temp;}Self& operator--(){++_it;return *this;}Self operator--(int){Self temp(*this);++_it;return temp;}

对于反向迭代器,递增意味着正向迭代器实际上是递减的,递减则相反。

相等与不等operator运算符重载:

 
         bool operator!=(const Self& rit)const{return _it != rit._it;}bool operator==(const Self& rit)const{return _it == rit._it;}

operator!=operator==:比较操作符,用于比较两个反向迭代器是否不相等或相等。

成员变量

Iterator _it;

内部迭代器_it:这是被包装的正向迭代器的实例,反向迭代器通过操作这个内部迭代器来实现反向遍历。

ListIterator类和ListReverseIterator类的思考

在这两类中,模版参数可以理解为对应类型的占位符,也就是明确告诉编译器这些参数对应的是什么样的数据类型,因为在后面的使用过程中,我们会对其进行封装,以至于传入模版参数的数据类型就是我们希望的数据类型。

注意ListReverseIterator类中的Ref operator*()解引用是调用正向迭代器的前一个位置的解引用。因为反向迭代器是对正向迭代器进行封装,复用,来实现反向遍历的功能。

在list类中我们使用反向迭代器时,rbegin传入的是end迭代器,也就是正向迭代器的最后一个元素的后一个位置。简单来说,反向迭代器实际上是正向迭代器的逆用,利用正向迭代器的end来封装复用实现rbegin,利用正向迭代器的begin来封装复用实现rend

正向迭代器的区间是[begin,end),为了统一反向迭代器的区间也应该是[rbegin,rend)。而rbegin是通过正向迭代器end实现的,rend是通过正向迭代器begin实现的,为了统一实现,反向迭代器的解引用operator*全部都返回当前迭代器前一个位置的元素的引用。

list

 
     template<class T>class list{typedef ListNode<T> Node;// 2. 在容器中给迭代器类型取别名---publicpublic:typedef ListIterator<T, T&, T*> iterator;typedef ListIterator<T, const T&, const T*> const_iterator;typedef ListReverseIterator<iterator> reverse_iterator;typedef ListReverseIterator<const_iterator> const_reverse_iterator;public:// 注意:list的迭代器一定不能是原生态的指针// vector之所以可以,因为vector底层是连续空间// 如果指针指向连续的空间,对指针++/--,该指针就可以移动到下一个/前一个位置// 但是list不行,因为链表中的节点是通过next和prev指针组织起来的,不一定连续// 如果将list的迭代器设置为原生态指针,++it/--it没有意义// typedef Node* iterator;  // ???public:// 构造list(){CreateHead();}list(int n, const T& value = T()){CreateHead();for (int i = 0; i < n; ++i){push_back(value);}}template<class Iterator>list(Iterator first, Iterator last){CreateHead();while (first != last){push_back(*first);++first;}}list(const list<T>& L){CreateHead();auto it = L.cbegin();while (it != L.cend()){push_back(*it);++it;}}list<T>& operator=(list<T> L){this->swap(L);return *this;}~list(){clear();delete _head;_head = nullptr;}//// 迭代器// 3. 增加begin和end的方法iterator begin(){/*iterator ret(_head->_next);return ret;*/return iterator(_head->_next);}iterator end(){return iterator(_head);}const_iterator cbegin()const{/*iterator ret(_head->_next);return ret;*/return const_iterator(_head->_next);}const_iterator cend()const{return const_iterator(_head);}reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}const_reverse_iterator crbegin()const{return const_reverse_iterator(cend());}const_reverse_iterator crend()const{return const_reverse_iterator(cbegin());}//// 容量size_t size()const{size_t count = 0;Node* cur = _head->_next;while (cur != _head){count++;cur = cur->_next;}return count;}bool empty()const{return _head == _head->_next;}void resize(size_t newsize, const T& value = T()){size_t oldsize = size();if (newsize <= oldsize){for (size_t i = newsize; i < oldsize; ++i){pop_back();}}else{for (size_t i = oldsize; i < newsize; ++i){push_back(value);}}}//// 元素访问T& front(){return *begin();}const T& front()const{//return _head->_next->_value;return *cbegin();}T& back(){return *(--end());}const T& back()const{// return _head->_prev->_value;return *(--cend());}///// 修改void push_front(const T& value){insert(begin(), value);}void pop_front(){erase(begin());}void push_back(const T& value){insert(end(), value);}void pop_back(){erase(--end());}iterator insert(iterator it, const T& value){Node* pos = it._pNode;Node* newNode = new Node(value);newNode->_next = pos;newNode->_prev = pos->_prev;newNode->_prev->_next = newNode;pos->_prev = newNode;return newNode;}iterator erase(iterator it){if (it == end())return end();Node* pos = it._pNode;Node* ret = pos->_next;pos->_prev->_next = pos->_next;pos->_next->_prev = pos->_prev;delete pos;return ret;}void clear(){auto it = begin();while (it != end()){it = erase(it);}}void swap(list<T>& L){std::swap(_head, L._head);}private:void CreateHead(){_head = new Node();_head->_next = _head;_head->_prev = _head;}private:Node* _head;};}

list类代码解析

 
     template<class T>class list{typedef ListNode<T> Node;// 2. 在容器中给迭代器类型取别名---publicpublic:typedef ListIterator<T, T&, T*> iterator;typedef ListIterator<T, const T&, const T*> const_iterator;typedef ListReverseIterator<iterator> reverse_iterator;typedef ListReverseIterator<const_iterator> const_reverse_iterator;

类模板声明:

template<class T> class list定义了一个泛型链表,T是链表中存储元素的类型。

迭代器类型别名:

定义了两种迭代器:iteratorconst_iterator,分别用于访问可修改的数据和只读数据。这些迭代器不是原生指针,而是封装过的,因为链表的元素不是连续存储的,不能直接通过指针算术操作访问。

还定义了反向迭代器reverse_iteratorconst_reverse_iterator,用于实现反向遍历。

构造函数和析构函数:

无参构造函数

 
        // 构造list(){CreateHead();}void CreateHead(){_head = new Node();_head->_next = _head;_head->_prev = _head;}

list()是无参构造函数,它只是创建了一个头节点。

指定的元素数量和值的构造函数

 
         list(int n, const T& value = T()){CreateHead();for (int i = 0; i < n; ++i){push_back(value);}}

list(int n, const T& value = T())根据指定的元素数量和值进行初始化。实际上就是不断地调用push_back操作。

范围构造函数

 
         template<class Iterator>list(Iterator first, Iterator last){CreateHead();while (first != last){push_back(*first);++first;}}

list(Iterator first, Iterator last)是范围构造函数,根据给定的迭代器范围来构造链表。

拷贝构造函数

 
         list(const list<T>& L){CreateHead();auto it = L.cbegin();while (it != L.cend()){push_back(*it);++it;}}

list(const list<T>& L)是拷贝构造函数,用另一个链表的内容来初始化新链表。

析构函数

 
         ~list(){clear();delete _head;_head = nullptr;}

~list()是析构函数,它清除链表中的所有元素,并删除头节点。

赋值操作符:

 
         list<T>& operator=(list<T> L){this->swap(L);return *this;}

使用了拷贝并交换的技巧来实现赋值操作符。

迭代器方法:

 
        // 迭代器// 3. 增加begin和end的方法iterator begin(){/*iterator ret(_head->_next);return ret;*/return iterator(_head->_next);}iterator end(){return iterator(_head);}const_iterator cbegin()const{/*iterator ret(_head->_next);return ret;*/return const_iterator(_head->_next);}const_iterator cend()const{return const_iterator(_head);}reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}const_reverse_iterator crbegin()const{return const_reverse_iterator(cend());}const_reverse_iterator crend()const{return const_reverse_iterator(cbegin());}

提供了begin, end, cbegin, cend, rbegin, rend, crbegin, crend等方法来获取迭代器,分别对应于开始、结束的正向和反向迭代器。

反向迭代器中的rbegin复用正向迭代器中的end操作,反向迭代器中的rend复用正向迭代器中的begin操作。

注意正向迭代器的end是最后一个元素后面一个位置,因为这是循环双向链表,因此end实际上指向的是head头结点。

容量和大小操作:

 
        // 容量size_t size()const{size_t count = 0;Node* cur = _head->_next;while (cur != _head){count++;cur = cur->_next;}return count;}bool empty()const{return _head == _head->_next;}void resize(size_t newsize, const T& value = T()){size_t oldsize = size();if (newsize <= oldsize){for (size_t i = newsize; i < oldsize; ++i){pop_back();}}else{for (size_t i = oldsize; i < newsize; ++i){push_back(value);}}}

size()方法计算链表的大小。注意只有随机访问迭代器才支持迭代器相减的操作。

随机访问迭代器(Random Access Iterator):支持直接相减操作,因为它们可以在常数时间内访问序列中的任何元素。vectordeque 容器提供的迭代器就是随机访问迭代器。list的迭代器并不属于随机访问迭代器,所以size操作只能通过迭代器的移动来计算个数,而不能通过迭代器的相减操作。

empty()检查链表是否为空。

resize()调整链表的大小,根据需要添加或移除元素。

元素访问:

 
        // 元素访问T& front(){return *begin();}const T& front()const{//return _head->_next->_value;return *cbegin();}T& back(){return *(--end());}const T& back()const{// return _head->_prev->_value;return *(--cend());}

front()back()方法分别用于访问链表的第一个元素和最后一个元素。

修改操作:

 
        // 修改void push_front(const T& value){insert(begin(), value);}void pop_front(){erase(begin());}void push_back(const T& value){insert(end(), value);}void pop_back(){erase(--end());}iterator insert(iterator it, const T& value){Node* pos = it._pNode;Node* newNode = new Node(value);newNode->_next = pos;newNode->_prev = pos->_prev;newNode->_prev->_next = newNode;pos->_prev = newNode;return newNode;}iterator erase(iterator it){if (it == end())return end();Node* pos = it._pNode;Node* ret = pos->_next;pos->_prev->_next = pos->_next;pos->_next->_prev = pos->_prev;delete pos;return ret;}void clear(){auto it = begin();while (it != end()){it = erase(it);}}void swap(list<T>& L){std::swap(_head, L._head);}

功能:在链表的前端插入一个新元素。

实现方式:通过调用insert方法,在begin()位置插入新元素。begin()返回指向链表第一个元素的迭代器。

pop_front()

功能:删除链表的第一个元素。

实现方式:通过调用erase方法,删除begin()位置的元素。这 effectively removes the first element of the list.

push_back(const T& value)

功能:在链表的末尾添加一个新元素。

实现方式:通过调用insert方法,在end()位置插入新元素。由于end()返回的迭代器实际上指向链表尾部的哑元节点,插入操作会在链表的最后一个元素之后插入新元素。

pop_back()

功能:删除链表的最后一个元素。

实现方式:通过调用erase方法,删除--end()位置的元素。--end()操作返回指向链表最后一个元素的迭代器。

insert(iterator it, const T& value)

功能:在指定位置it前插入一个新元素。

实现方式:首先获取it指向的节点pos,然后创建一个新节点newNode,并将其插入到pos前面。更新相邻节点的指针以维持链表的连贯性。最后,返回指向新插入节点的迭代器。

erase(iterator it)

功能:删除指定位置it的元素。

实现方式:首先检查it是否为end(),如果是,则不进行任何操作并返回end()。否则,获取it指向的节点pos,调整前后节点的指针跳过pos,然后删除pos节点,最后返回指向被删除节点下一个节点的迭代器。

clear()

功能:清空链表,删除所有元素。

实现方式:从链表的开始遍历,使用erase方法逐个删除元素,直到整个链表被清空。

swap(list<T>& L)

功能:与另一个链表L交换内容。

实现方式:简单地交换两个链表的头节点指针_head。这是通过std::swap实现的,是一个非常高效的操作,因为它仅仅交换了指针,而不需要移动或复制链表中的元素。

私有成员和方法:

 
    private:void CreateHead(){_head = new Node();_head->_next = _head;_head->_prev = _head;}private:Node* _head;};

_head是指向链表头节点的指针。

CreateHead()是一个辅助方法,用于初始化链表,创建一个哨兵节点作为头节点。

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2779765.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

C++11:移动构造函数【写法+调用时机】【C++返回vector为什么不报错】

文章目录 what is 移动构造函数&#xff1f;移动构造函数的实现的例子when 移动构造函数&#xff1f;在C98之前&#xff0c;没有移动构造函数&#xff0c;是怎么做的呢&#xff1f;后记 what is 移动构造函数&#xff1f; 构造函数string(string&& str)类似于复制构造…

多旋翼无人机飞行控制详解,四旋翼无人机飞控原理深入解析

在四旋翼无人机中&#xff0c;相邻的两个螺旋桨旋转方向是相反的。如图所示&#xff0c;三角形红箭头表示飞机的机头朝向&#xff0c;螺旋桨M1、M3的旋转方向为逆时针&#xff0c;螺旋桨M2、M4的旋转方向为顺时针。当飞行时&#xff0c;M2、M4所产生的逆时针反作用力&#xff0…

黄金交易策略(Nerve Nnife.mql4):大K线对技术指标的影响

我们使用heiken ashi smoothed来做敏感指标&#xff08;大趋势借助其转向趋势预判&#xff0c;但不是马上转变&#xff09;&#xff0c;has默认使用6根k线的移动平均值来做计算的。若在6根k线规范内有一个突变的行情&#xff08;k线很长&#xff09;&#xff0c;那么整个行情的…

物联网和工业4.0

在当今这个快速发展的技术时代&#xff0c;物联网&#xff08;IoT&#xff09;和工业4.0成为了推动全球进入新工业时代的两大驱动力。对于刚入行的人来说&#xff0c;深入理解这两个概念及其背后的技术原理&#xff0c;对于把握未来的职业机会至关重要。 物联网&#xff0c;简…

【EAI 016】VIMA: General Robot Manipulation with Multimodal Prompts

论文标题&#xff1a;VIMA: General Robot Manipulation with Multimodal Prompts 论文作者&#xff1a;Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei, Anima Anandkumar, Yuke Zhu, Linxi Fan 作者单位&#xff1a;Stanfo…

Netty应用(七) 之 Handler Netty服务端编程总结

目录 15.Handler 15.1 handler的分类 15.1.1 按照方向划分 15.1.2 handler的结构 15.2 输入方向ChannelInboundHandlerAdapter 15.2.1 输出方向Handler的顺序 15.2.2 多个输入方向Handler之间的数据传递 15.2.2.1 handler消失了 15.2.2.2 手动编写netty提供的new Strin…

opencv mat用法赋值克隆的操作和一些基本属性

//Mat基本结构 (头部 数据部分) //赋值的话 就是修改了指针位置 但还是指向了原来数据 并没创建数据 本质上并没有变 //只有克隆或者拷贝时 它才会真正复制一份数据 //代码实现 //创建方法 - 克隆 //Mat m1 src.clone(); //复制 //Mat m2; //src.copyTo(m2); //赋值法 …

【Linux】学习-基础IO—上

Linux基础IO—上 复习c语言接口 你真的懂文件吗&#xff1f; 文件的打开与关闭 深入了解文件读与写(C语言级别) 系统文件I/O 我们知道&#xff0c;文件是放在磁盘(硬件)上的&#xff0c;我们用代码访问文件的思路是&#xff1a; 写代码 -> 编译 -> 生成可执行exe …

shell脚本编译与解析

文章目录 shell环境变量全局变量局部变量设置PATH 环境变量 启动文件环境变量持久化 脚本编写重定向判断 和循环命令行参数传入参数循环读取命令行参数获取用户输入 处理选项处理简单选项处理带值选项 重定向显示并且同时输出到文件 替换目录下的所有文件中某个关键字删除关键字…

服务器内存使用率多少会影响正常访问?

在探讨服务器内存使用率多少会影响正常访问这个问题时&#xff0c;我们首先要明白&#xff0c;服务器的性能和稳定性与内存使用状况息息相关。当服务器的内存使用率过高时&#xff0c;可能会导致系统运行缓慢、程序崩溃或者出现其他一些异常情况&#xff0c;从而影响到正常的网…

c语言求多边形面积

多边形有现成的面积公式&#xff0c;直接套用即可。area函数接受两个参数&#xff1a;顶点坐标&#xff0c;顶点个数。 #include <stdio.h> #include <math.h>struct point {int x;int y; };float area(point p[], int n) {int i;float sum 0.0;for (i 0; i <…

使用CICFlowMeter 实现对pcap文件的特征提取【教程】

使用CICFlowMeter 实现对pcap文件的特征提取【教程】 针对现有的关于CICFlowMeter 的使用教程不够全面&#xff0c;一些细节没有展示&#xff0c;我将结合网络上的相关资料和实际的经历&#xff0c;提供一些经验和建议。 configuration information --------------- Windows…

机器学习:Softmax介绍及代码实现

Softmax原理 Softmax函数用于将分类结果归一化&#xff0c;形成一个概率分布。作用类似于二分类中的Sigmoid函数。 对于一个k维向量z&#xff0c;我们想把这个结果转换为一个k个类别的概率分布p(z)。softmax可以用于实现上述结果&#xff0c;具体计算公式为&#xff1a; 对于…

嵌入式学习之Linux入门篇笔记——11,Linux目录结构讲解

配套视频学习链接&#xff1a;http://【【北京迅为】嵌入式学习之Linux入门篇】 https://www.bilibili.com/video/BV1M7411m7wT/?p4&share_sourcecopy_web&vd_sourcea0ef2c4953d33a9260910aaea45eaec8 1.Linux 目录结构 Linux 整个文件系统是从 / 目录&#xff08;根…

架构(十三)动态本地锁

一、引言 加锁大家都知道&#xff0c;但是目前提供动态锁的基本都是分布式锁&#xff0c;根据订单或者某个收费款项进行加锁。比如这个1订单要收刷卡费用&#xff0c;那就OREDER_1做为key丢到redis进行分布式加锁。这也是当下分布式锁最流行的方式。 但是对于平台项目或者一些并…

C++ | string类按位赋值小技巧

一切的起因是string类的谜之初始化。 在写代码的时候&#xff0c;我发现即使没有用字符串初始化string对象&#xff0c;也可以对string对象进行下标操作&#xff0c;就像这样&#xff1a; #include<iostream> #include<string> using namespace std; int main() {…

读书笔记之《运动改造大脑》:运动是最佳的健脑丸

《运动改造大脑》的作者是约翰•瑞迪&#xff08;John Ratey&#xff09; / 埃里克•哈格曼&#xff08;Eric Hagerman&#xff09;&#xff0c;原著名称为&#xff1a;Spark&#xff1a;the revolutionary new science of exercise and the brain&#xff0c;于 2013年出版约翰…

Activiti7(流程引擎)简单笔记,附带作者执行的Demo代码文件

文章目录 一、Activiti7流程基础1、最简单的流程2、流程值表达式3、方法表达式4、节点监听器5、流程变量6、候选人7、候选人组8、流程网关排他网关并行网关包容网关事件网关 二、Activiti7流程事件1、定时器事件定时器开始事件定时器中间事件定时器边界事件 2、消息事件消息开始…

【EAI 015】CLIPort: What and Where Pathways for Robotic Manipulation

论文标题&#xff1a;CLIPort: What and Where Pathways for Robotic Manipulation 论文作者&#xff1a;Mohit Shridhar1, Lucas Manuelli, Dieter Fox1 作者单位&#xff1a;University of Washington, NVIDIA 论文原文&#xff1a;https://arxiv.org/abs/2109.12098 论文出处…

问题:重热现象可使多级汽轮机的理想焓降增加,重热系数越大,多级汽轮机的内效率就越低。 #学习方法#微信#媒体

问题&#xff1a;重热现象可使多级汽轮机的理想焓降增加&#xff0c;重热系数越大&#xff0c;多级汽轮机的内效率就越低。 参考答案如图所示