《剑指 Offer》专项突破版 - 面试题 38、39 和 40 : 通过三道面试题详解单调栈(C++ 实现)

目录

面试题 38 : 每日温度

面试题 39 : 直方图最大矩形面积

方法一、暴力求解

方法二、递归求解

方法三、单调栈法

面试题 40 : 矩阵中的最大矩形


 


面试题 38 : 每日温度

题目

输入一个数组,它的每个数字是某天的温度。请计算每天需要等几天才会出现更高的温度。例如,如果输入数组 [35, 31, 33, 36, 34],那么输出为 [3, 1, 1, 0, 0]。由于第 1 天的温度是 35℃,要等 3 天才会出现更高的温度 36℃,因此对应的输出为 3。第 4 天的温度是 36℃,后面没有更高的温度,它对应的输出是 0。其他的以此类推。

分析

解决这个问题的直观方法很多人很快就能想到。对于数组中的每个温度,可以扫描它后面的温度直到发现一个更高的温度为止。如果数组包含 n 天的温度,那么这种思路的时间复杂度是 O(n^2)。

下面通过一个具体的例子来分析这个问题的规律。假设输入的表示每天的温度的数组为 [35, 31, 33, 36, 34]。第 1 天的温度是 35℃,此时还不知道后面会不会有更高的温度,所以先将它保存到一个数据容器中。第 2 天的温度是 31℃,比第 1 天温度低,同样也保存到数据容器中。第 3 天的温度是 33℃,比第 2 天的温度高,由此可知,第 2 天需要等 1 天才有更高的温度。

每次从数组中读取某一天的温度,并且都将其与之前的温度(也就是已经保存在数据容器中的温度)相比较。从离它较近的温度开始比较看起来是一个不错的选择,也就是后存入数据容器中的温度先拿来比较,这契合 "后进先出" 的特性,所以可以考虑用栈来实现这个数据容器。同时,需要计算出现更高温度的等待天数,存入栈中的数据应该是温度在数组中的下标。等待的天数就是两个温度在数组中的下标之差

因此,处理到第 3 天的温度时,栈的状态为 [0, 1]。在知道第 2 天需要等 1 天将出现更高的温度之后,它就没有必要再保存在栈中,将它出栈。第 3 天的温度也需要入栈,以便和以后的温度比较,此时栈的状态为 [0, 2]。

第 4 天的温度是 36℃。从栈顶开始与之前的温度比较,它比第 3 天的温度 33℃ 高,因此第 3 天需要等 1 天就会出现更高的温度,这一天在数组中的下标 2 出栈。它也比第 1 天的温度 35℃ 高,因此第 1 天需要等 3 天才会出现更高的温度,这一天在数组中的下标 0 出现。然后将第 4 天在数组中的下标 3 入栈,以便和以后的温度比较。此时栈的状态为 [3]。最后一天的温度是 34℃,比位于栈顶的第 4 天的温度低,将其入栈,最终栈的状态是 [3, 4]。最终留在栈中的两天的后面都没有出现更高的温度。

解决这个问题的思路总结起来就是用一个栈保存每天的温度在数组中的下标。每次从数组中读取一个温度,然后将其与栈中保存的温度(根据下标可以得到温度)进行比较。如果当前温度比位于栈顶的温度高,那么就能知道位于栈顶那一天需要等待几天才会出现更高的温度。然后出栈 1 次,将当前温度与下一个位于栈顶的温度进行比较。如果栈中已经没有比当前温度低的温度,则将当前温度在数组中的下标入栈

代码实现

class Solution {
public:vector<int> dailyTemperatures(vector<int>& temperatures) {int n = temperatures.size();vector<int> result(n, 0);stack<int> st;for (int i = 0; i < n; ++i){while (!st.empty() && temperatures[i] > temperatures[st.top()]){result[st.top()] = i - st.top();st.pop();}
​st.push(i);}return result;}
};

保存在栈中的温度(通过数组下标可以得到温度)是递减排序的。这是因为如果当前温度比位于栈顶的温度高,位于栈顶的温度将出栈,所以每次入栈时当前温度一定比位于栈顶的温度低或相同

假设输入数组的长度为 n。虽然上述代码中有一个嵌套的二重循环,但它的时间复杂度是 O(n),这是因为数组中每个温度入栈、出栈各 1 次。这种解法的空间复杂度也是 O(n)。


面试题 39 : 直方图最大矩形面积

题目

直方图是由排列在同一基线上的相邻柱子组成的图形。输入一个由非负数组成的数组,数组中的数字是直方图中柱子的高。求直方图中最大矩形面积。假设直方图中柱子的宽都为 1。例如,输入数组 [3, 2, 5, 4, 6, 1, 4, 2],其对应的直方图如下图所示,该直方图中最大矩形面积为 12,如阴影部分所示。

分析

矩形的面积等于宽乘以高,因此只要能确定每个矩形的宽和高,就能计算它的面积。如果直方图中一个矩形从下标为 i 的柱子开始,到下标为 j 的柱子结束,那么这两根柱子之间的矩形(含两端的柱子)的宽是 j - i + 1。矩形的高就是两根柱子之间的所有柱子最矮的高度。例如,上图中从下标为 2 的柱子到下标为 4 的柱子之间的矩形宽度是 3,矩形的高度最多只能是 4,即它们之间 3 根柱子最矮的高度。

方法一、暴力求解

如果能逐一找出直方图中所有的矩形并比较它们的面积,就能得到最大矩形面积。下面使用嵌套的二重循环遍历所有矩形,并比较它们的面积。

class Solution {
public:int largestRectangleArea(vector<int>& heights) {int maxArea = 0;for (int i = 0; i < heights.size(); ++i){int minHeight = heights[i];for (int j = i; j < heights.size(); ++j){if (heights[j] < minHeight)minHeight = heights[j];int area = minHeight * (j - i + 1);
​if (area > maxArea)maxArea = area;}}return maxArea;}
};

这种解法的时间复杂度是 O(n^2),空间复杂度是 O(1)。

方法二、递归求解

上图的直方图中最矮的柱子在数组中的下标是 5,它的高度是 1。这个直方图的最大矩形有以下 3 种可能:

  1. 第 1 种是矩形通过这根最矮的柱子。通过最矮的柱子的最大矩形的高度是 1,宽度是 7

  2. 第 2 种是矩形的起始柱子和终止柱子都在最矮的柱子的左侧,也就是从下标为 0 的柱子到下标为 4 的柱子的直方图的最大矩形

  3. 第 3 种是矩形的起始柱子和终止柱子都在最矮的柱子的右侧,也就是从下标为 6 的柱子到下标为 7 的柱子的直方图的最大矩形

第 2 种和第 3 种本质上来说和求整个直方图的最大矩形面积是同一个问题,可以调用递归函数解决

class Solution {
private:int _largestRectangleArea(vector<int>& heights, int left, int right){if (left > right)return 0;if (left == right)return heights[left];
​int minHeightIndex = left;for (int i = left + 1; i <= right; ++i){if (heights[i] < heights[minHeightIndex])minHeightIndex = i;}int maxArea = heights[minHeightIndex] * (right - left + 1);int area1 = _largestRectangleArea(heights, left, minHeightIndex - 1);int area2 = _largestRectangleArea(heights, minHeightIndex + 1, right);if (area1 > maxArea)maxArea = area1;if (area2 > maxArea)maxArea = area2;return maxArea;}
​
public:int largestRectangleArea(vector<int>& heights) {return _largestRectangleArea(heights, 0, heights.size() - 1);}
};

假设输入数组的长度为 n。如果每次都能将 n 根柱子分成两根柱子数量为 n / 2 的子直方图,那么递归调用的深度为 O(logn),整个递归算法的时间复杂度是 O(nlogn)。但如果直方图中柱子的高度是排序的(递增排序或递减排序),那么每次最矮的柱子都位于直方图的一侧,递归调用的深度就是 O(n),此时递归算法的时间复杂度也变成 O(n^2)

递归算法的空间复杂度取决于调用栈的深度,因此平均空间复杂度是 O(logn),最坏情况下的空间复杂度是 O(n)

方法三、单调栈法

计算以每根柱子为顶的最大矩形面积,比较这些矩形面积就能得到直方图中的最大矩形面积

以某根柱子为顶的最大矩形,一定是从该柱子向两侧延伸直到遇到比它矮的柱子,这个最大矩形的高就是该柱子的高,最大矩形的宽是两侧比它矮的柱子中间的间隔。例如,为了求上图所示的直方图中以下标为 3 的柱子为顶的最大矩形面积,应该从该柱子开始向两侧延伸,左侧比它矮的柱子的下标是 1,右侧比它矮的柱子的下标是 5。因此,以下标为 3 的柱子为顶的最大矩形的高为 4,宽为 3(左右两侧比它矮的柱子的下标之差再减 1,即 5 - 1 - 1)。

class Solution {
public:int largestRectangleArea(vector<int>& heights) {int n = heights.size();vector<int> left(n, -1);vector<int> right(n, n);
​stack<int> st;for (int i = n - 1; i >= 0; --i){while (!st.empty() && heights[i] < heights[st.top()]){left[st.top()] = i;st.pop();}st.push(i);}st = stack<int>();for (int i = 0; i < n; ++i){while (!st.empty() && heights[i] < heights[st.top()]){right[st.top()] = i;st.pop();}st.push(i);}
​int maxArea = 0;for (int i = 0; i < n; ++i){int area = heights[i] * (right[i] - left[i] - 1);if (area > maxArea)maxArea = area;}return maxArea;} 
};

这种解法的时间复杂度是 O(n),空间复杂度也是 O(n)

 


面试题 40 : 矩阵中的最大矩形

题目

请在一个由 0、1 组成的矩阵中找出最大的只包含 1 的矩形并输出它的面积。例如,在下图的矩阵中,最大的只包含 1 的矩形如阴影部分所示,它的面积是 6。

分析

面试题 2.4 是关于最大矩形的,这个题目还是关于最大矩形的,它们之间有没有某种联系?如果能从矩阵中找出直方图,那么就能通过计算直方图中的最大矩形面积来计算矩阵中的最大矩形面积

直方图是由排列在同一基线上的相邻柱子组成的图形。由于题目要求矩形中只包含数字 1,因此将矩阵中上下相邻的值为 1 的格子看成直方图中的柱子。如果分别以上图中的矩阵的每行为基线,就可以得到 4 个由数字 1 的格子组成的直方图,如下图所示。

在将矩阵转换成多个直方图之后,就可以计算并比较每个直方图的最大矩形面积,所有直方图中的最大矩形就是整个矩阵中的最大矩形

代码实现

class Solution {
private:int largestRectangleArea(vector<int>& heights) {int n = heights.size();vector<int> left(n, -1);vector<int> right(n, n);
​stack<int> st;for (int i = n - 1; i >= 0; --i){while (!st.empty() && heights[i] < heights[st.top()]){left[st.top()] = i;st.pop();}st.push(i);}st = stack<int>();for (int i = 0; i < n; ++i){while (!st.empty() && heights[i] < heights[st.top()]){right[st.top()] = i;st.pop();}st.push(i);}
​int maxArea = 0;for (int i = 0; i < n; ++i){int area = heights[i] * (right[i] - left[i] - 1);if (area > maxArea)maxArea = area;}return maxArea;}public:int maximalRectangle(vector<string>& matrix) {if (matrix.size() == 0 || matrix[0].size() == 0)return 0;
​int result = 0;vector<int> heights(matrix[0].size(), 0);for (int i = 0; i < matrix.size(); ++i){for (int j = 0; j < matrix[i].size(); ++j){if (matrix[i][j] == '0')heights[j] = 0;else++heights[j];}
​int maxArea = largestRectangleArea(heights);if (maxArea > result)result = maxArea;}return result;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2778617.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

AJAX——认识URL

1 什么是URL&#xff1f; 统一资源定位符&#xff08;英语&#xff1a;Uniform Resource Locator&#xff0c;缩写&#xff1a;URL&#xff0c;或称统一资源定位器、定位地址、URL地址&#xff09;俗称网页地址&#xff0c;简称网址&#xff0c;是因特网上标准的资源的地址&…

生于越南,“开源改变了我的人生!”

注&#xff1a;本文精选自《新程序员 007&#xff1a;大模型时代的开发者》&#xff0c;欢迎点击订购。 作者 | 王启隆 责编 | 唐小引 出品 | 《新程序员》编辑部 随着人工智能浪潮的席卷&#xff0c;开源不再仅仅是计算机领域的一个话题&#xff0c;而是成为推动技术创新…

【动态规划】【回文】【字符串】1278分割回文串 III

作者推荐 【动态规划】【前缀和】【C算法】LCP 57. 打地鼠 本文涉及知识点 动态规划汇总 LeetCode1278分割回文串 III 给你一个由小写字母组成的字符串 s&#xff0c;和一个整数 k。 请你按下面的要求分割字符串&#xff1a; 首先&#xff0c;你可以将 s 中的部分字符修改…

【Linux系统 04】OpenEuler配置

目录 一、镜像文件下载 二、配置静态IP 三、启动SSH连接 四、远程免密登录 五、安装常用软件 一、镜像文件下载 官方下载地址&#xff1a;openEuler下载 | 欧拉系统ISO镜像 | openEuler社区官网 选择一个版本&#xff0c;lopenEuler通常有两种版本&#xff1a; 创新版&…

Java 内存区域介绍

&#xff08;1&#xff09;程序计数器 程序计数器主要有两个作用&#xff1a; 字节码解释器通过改变程序计数器来依次读取指令&#xff0c;从而实现代码的流程控制&#xff0c;如&#xff1a;顺序执行、选择、循环、异常处理。 在多线程的情况下&#xff0c;程序计数器用于记录…

C++笔记之regex(正则表达式)

C++笔记之regex(正则表达式) ——2024-02-10 ——《C++标准库》(第2版,侯捷译) Page 717 code review! 文章目录 C++笔记之regex(正则表达式)例1:使用正则表达式进行搜索(`std::regex_search`)例2:使用正则表达式进行全文匹配(`std::regex_match`)例3:使用正则表达式…

Linux操作系统基础(八):Linux的vi/vim编辑器

文章目录 Linux的vi/vim编辑器 一、vi/vim编辑器介绍 二、打开文件 三、VIM编辑器的三种模式(重点) 四、命令模式相关命令 五、底行模式相关命令 Linux的vi/vim编辑器 一、vi/vim编辑器介绍 vi是visual interface的简称, 是Linux中最经典的文本编辑器 vi的核心设计思想…

【九章斩题录】Leetcode:判定是否互为字符重排(C/C++)

面试题 01.02. 判定是否互为字符重排 ✅ 模板&#xff1a;C class Solution { public:bool CheckPermutation(string s1, string s2) {} }; 「 法一 」排序 &#x1f4a1; 思路&#xff1a;看到题目中说 "重新排列后能否变成另一个字符串"&#xff0c;等等……重新…

读千脑智能笔记10_人类智能存在的风险

1. 人类智能存在的风险 1.1. “末日时钟” 1.1.1. 核战争引发的大火列为地球毁灭的主要原因 1.1.2. 气候变化列为人类自我毁灭的第二大潜在原因 1.2. 除非我们刻意加入自私的驱动力、动机或情感&#xff0c;否则智能机器并不会威胁到人类的生存 1.2.1. 人类在不远的将来会…

系统架构21 - 统一建模语言UML(下)

UML图 UML中的图分类作用 视图用例视图逻辑视图进程视图实现视图部署视图 UML中的图 “图”是一组元素的图形表示&#xff0c;大多数情况下把图画成顶点&#xff08;代表事物&#xff09;和弧&#xff08;代表关系&#xff09;的连通图。为了对系统进行可视化&#xff0c;可以…

【经验】PIC16F877A串口发送字符串问题

PIC16F877A串口发送&#xff0c;查询方式&#xff0c;就为了调出这个费了我一天时间&#xff0c;原来是串口芯片电压问题&#xff0c;现总结如下&#xff1a; 1、注意232串口芯片供电电压&#xff0c;有5V和3.3V的 2、注意TXD、RXD接线&#xff0c;单片机的TXD接232芯片的R2O…

Linux中孤儿/僵尸进程/wait/waitpid函数

孤儿进程&#xff1a; 概念&#xff1a;若子进程的父进程已经死掉&#xff0c;而子进程还存活着&#xff0c;这个进程就成了孤儿进程。 为了保证每个进程都有一个父进程&#xff0c;孤儿进程会被init进程领养&#xff0c;init进程成为了孤儿进程的养父进程&#xff0c;当孤儿…

【计算机网络】时延,丢包,吞吐量(分组交换网络

时延 结点处理时延(nodal processing delay&#xff09; dproc 排队时延&#xff08;queuing delay&#xff09; dqueue 传输时延&#xff08;transmission delay&#xff09; dtrans 路由器将分组推出所需要的时间&#xff0c;是分组长度和链路传输速率的函数 传播时…

【开源】JAVA+Vue.js实现计算机机房作业管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 登录注册模块2.2 课程管理模块2.3 课时管理模块2.4 学生作业模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 课程表3.2.2 课时表3.2.3 学生作业表 四、系统展示五、核心代码5.1 查询课程数据5.2 新增课时5.3 提交作…

酷开科技荣获消费者服务平台黑猫投诉“消费者服务之星”称号

什么是优质服务&#xff1f;既是以客户为中心的庄严承诺&#xff0c;又是对服务能力提升的深耕细作&#xff1b;既是对服务标准的敬畏&#xff0c;也是对服务创新的不断探索……服务是多维的&#xff0c;每个企业都有自己独到的诠释&#xff0c;或事无巨细环环严控&#xff0c;…

什么是CDR数字音频广播

一、什么是数字音频广播 CDR(China DigilalRadio)&#xff0c;即中国数字音领广播&#xff0c;是运用广播数字化技术&#xff0c;通过对音领信号进行信源编码、信道编码和载波调制传输&#xff0c;来实现数字音频广播业务和数据业务的播出。CDR与传统的FM调频广播相比&#xff…

c语言数据类型定义错误导致的数据溢出或者死循环

数据溢出问题 #include <stdio.h>/* 数据溢出 */int main() {char i; // 数据表示范围[-128,127] 0xf0 ~ 0x7ffor(i0;i<130;i) // {printf("%d ",i);}return 0; }/* 编译运行上面的程序&#xff0c;你会发现程序陷入了死循环&#xff0c;一直在不断…

【C++】map与set的常见使用

目录 1.关联式容器与序列式容器 2.键值对与pair 3.set 4.map 4.1map的插入与修改 4.2map的迭代器使用 4.3map中[ ]的巧妙用法 1.关联式容器与序列式容器 序列式容器(vector、list、deque…)&#xff1a;其底层为线性序列的数据结构&#xff0c;里面存储的是元素本身。 …

blender怎么保存窗口布局,怎么设置默认输出文件夹

进行窗口布局大家都会&#xff0c;按照自己喜好来就行了&#xff0c;设置输出文件夹如图 这些其实都简单。关键问题在于&#xff0c;自己调好了窗口布局&#xff0c;或者设置好了输出文件夹之后&#xff0c;怎么能让blender下次启动的时候呈现出自己设置好的窗口布局&#xff…

滑块识别验证

滑块识别 1. 获取图片 测试网站&#xff1a;https://www.geetest.com/adaptive-captcha-demo 2. 点击滑块拼图并开始验证 # 1.打开首页 driver.get(https://www.geetest.com/adaptive-captcha-demo)# 2.点击【滑动拼图验证】 tag WebDriverWait(driver, 30, 0.5).until(la…