【5G NR】【一文读懂系列】移动通讯中使用的信道编解码技术-Viterbi译码原理

目录

一、引言

二、Viterbi译码的基本原理

2.1 卷积码与网格图

2.2 Viterbi算法的核心思想

2.3 路径度量与状态转移

三、Viterbi译码算法工作原理详解

3.1 算法流程

3.2 关键步骤

3.3 译码算法举例

3.4 性能特点

四、Viterbi译码的应用场景

4.1 移动通信系统

4.2 卫星通信系统

4.3 磁盘存储系统

五、Viterbi译码的优缺点分析

5.1 优点

5.2 缺点

六、Matlab算法示例

七、总结


一、引言

在数字通信领域,为了确保信息的可靠传输,我们常常需要对发送的数据进行编码,并在接收端进行译码。其中,Viterbi译码是一种广泛使用的最大似然序列估计算法,用于在存在噪声和干扰的通信信道中恢复原始数据。本文将详细介绍Viterbi译码的基本原理、应用场景、优缺点,并与其他译码技术进行比较。

二、Viterbi译码的基本原理

Viterbi译码算法是一种基于动态规划的最优路径搜索算法,它由Andrew Viterbi于1967年提出,最初用于卷积码的解码。Viterbi译码通过寻找最可能的发送序列来估计原始信息,即在所有可能的发送序列中,选择一条与接收序列差异最小的路径作为最优估计。

2.1 卷积码与网格图

在理解Viterbi译码之前,我们需要先了解卷积码。卷积码是一种纠错编码方式,它通过将输入数据与编码器的状态进行卷积运算来生成输出码字。卷积码的特点是可以利用历史信息,使得码字之间存在一定的相关性。这种相关性可以通过网格图来表示,网格图中的每一条路径都对应一个可能的发送序列。

2.2 Viterbi算法的核心思想

Viterbi算法的核心思想是在网格图中搜索最优路径。它按照时间顺序逐步计算每个状态的最优路径度量值,并保留到达每个状态的最优路径。在每一步中,算法都会根据当前接收到的符号和状态转移概率来更新路径度量值。最终,算法选择一条具有最小路径度量值的路径作为最优估计。

2.3 路径度量与状态转移

路径度量是衡量路径优劣的指标,通常定义为路径上所有分支的度量值之和。分支度量值可以根据接收符号与预期符号之间的差异来计算,差异越小,度量值越小。状态转移是指从一个状态转移到另一个状态的过程,每个状态转移都对应一个分支度量值。

三、Viterbi译码算法工作原理详解

Viterbi译码算法是一种最大似然序列估计(MLSE)算法,用于在存在噪声的情况下解码卷积码,它是由Andrew Viterbi在1967年提出的。该算法通过动态规划的方式,寻找最有可能通过卷积码编码器和噪声信道传输的原始信息序列。

3.1 算法流程

  1. 初始化:确定所有状态在时刻t=0的路径度量值。对于起始状态,路径度量通常设为0,而对于其他所有状态,路径度量则设为无穷大(表示不可能的状态)。

  2. 递推(路径度量计算与更新):对于每个时刻t和每个状态s,计算到达该状态的所有可能路径的度量值。路径度量通常基于接收序列和假设路径之间的差异,如汉明距离或欧氏距离。选择具有最小度量值的路径作为幸存路径,并更新路径度量和路径历史。

  3. 终止:在达到接收序列的末尾时,选择具有最小路径度量的状态作为最终状态。

  4. 回溯:从最终状态开始,沿着幸存路径回溯到初始状态,从而确定最可能的原始信息序列。

3.2 关键步骤

  • 分支度量计算:对于每个状态和每个可能的输入比特,计算从当前状态转移到下一状态的分支度量。这通常涉及计算接收序列与假设分支之间的差异。

  • 加-比较-选择(ACS)操作:对于每个状态,将所有进入该状态的路径的度量值相加,并与当前状态的幸存路径度量进行比较。选择具有最小度量值的路径作为新的幸存路径。

  • 路径历史存储:为了能够在最后进行回溯,需要存储每个状态和时刻的幸存路径历史信息。

3.3 译码算法举例

维特比算法就是寻找一条路径,使得该路径的编码输出与接收序列的汉明距离最小,其关键就是路径的寻找过程。

  • 根据网格图(Trellis)(【5G NR】【一文读懂系列】移动通讯中使用的信道编解码技术-卷积码原理),首先,我们从第一个状态出发,到下一个状态有两种路径,分别计算这两条路径的编码输出与接收序列的汉明距离(注意,此时不能进行任何舍弃,不能将距离大的舍弃)。

  • 第二步,从第一步到达的两个状态出发,继续寻找路径,由于2位移位寄存器共有四种状态,因此此时我们得到到达所有状态的路径(无论是否最优)

  • 第三步,从这四个状态出发,继续寻找路径,此时我们将得到8种路径。这一步是算法的关键,此时要保留到达各状态的最短路径,舍弃其他路径,即舍弃后仍保留四条路径,且四条路径分别对应四个状态(无论该状态以后的路径如何选择,当到达该状态时,该状态以前的路径一定是最优的)。对于(n,k,N)卷积码,进行维特比译码时,当到达第N步时,要对路径进行舍弃,只保留幸存路径的信息,储存幸存路径以及当前的累计距离。

  • 第四步:继续进行路径寻找,同样只保留每个状态下的幸村路径,直至步数达到输入序列的个数。

维特比算法复杂度:每步要比较2×2^(N-1)条路径(每个状态两条),计算量与步数(输入码的个数)成正比。

3.4 性能特点

  • 最优性能:在给定足够长的接收序列时,Viterbi译码器能够提供最大似然序列估计,即它能够找到最有可能的原始信息序列。

  • 复杂度:Viterbi译码的复杂度随约束长度的增加而指数增长。然而,通过有效的实现技术(如量化和剪枝),可以降低实际应用的复杂度。

  • 延迟:由于Viterbi译码是一种块处理算法,它通常会在接收到整个块或一段足够长的序列后才开始解码,这可能会导致一定的解码延迟。

  • 适用于多种信道:Viterbi译码不仅适用于加性白高斯噪声(AWGN)信道,还适用于其他类型的信道,如瑞利衰落信道和多径信道。

四、Viterbi译码的应用场景

Viterbi译码广泛应用于各种数字通信系统,特别是那些对误码率要求较高的场景。以下是一些典型的应用场景:

4.1 移动通信系统

在移动通信系统中,由于信道条件复杂多变,信号在传输过程中容易受到干扰和衰落。Viterbi译码可以有效地纠正由于信道干扰引起的误码,提高通信系统的可靠性。

4.2 卫星通信系统

卫星通信系统面临着长距离传输和大气层干扰等挑战。Viterbi译码结合其他纠错编码技术,可以在恶劣的信道条件下实现数据的可靠传输。

4.3 磁盘存储系统

在磁盘存储系统中,由于磁盘表面的缺陷、磁头的不稳定性以及外部干扰等因素,读取数据时可能会发生错误。Viterbi译码可以提高磁盘存储系统的数据恢复能力,减少读取错误的发生。

五、Viterbi译码的优缺点分析

5.1 优点

(1)性能优越:Viterbi译码是一种最大似然序列估计算法,它能够在存在噪声和干扰的信道中实现较低的误码率。

(2)适用于多种信道条件:Viterbi译码算法对信道条件的变化具有较强的适应性,可以应用于不同类型的信道。

(3)可与其他技术结合使用:Viterbi译码可以与其他纠错编码技术、调制技术等结合使用,进一步提高通信系统的性能。

5.2 缺点

(1)计算复杂度较高:Viterbi译码算法的计算复杂度随约束长度的增加而呈指数增长,这限制了其在一些实时性要求较高的场景中的应用。

(2)存储需求较大:为了实现Viterbi译码,需要存储大量的路径度量值和状态信息,这对硬件的存储能力提出了更高的要求。

(3)对初始状态敏感:Viterbi译码的性能受到初始状态选择的影响,如果初始状态选择不当,可能会导致译码性能下降。

六、Matlab算法示例

下面是一个简单的Viterbi译码算法的Matlab实现示例。请注意,这个例子假设你已经有了卷积码的生成多项式、输入信号(接收序列)以及其他必要的参数。

function decoded_bits = viterbi_decoder(received_signal, constraint_length, generator_polynomials)  % received_signal: 接收到的信号序列(1 x N 向量)  % constraint_length: 约束长度(标量)  % generator_polynomials: 生成多项式的矩阵形式(K-1 x R 矩阵,K是约束长度,R是输出数量)  % decoded_bits: 译码后的比特序列(1 x (N/R) 向量,R是输出数量)  % 参数检查  if nargin < 3  error('Not enough input arguments.');  end  % 初始化变量  N = length(received_signal); % 接收信号长度  R = size(generator_polynomials, 2); % 输出数量(速率为1/R)  num_states = 2^(constraint_length - 1); % 状态数  trellis = poly2trellis(constraint_length - 1, generator_polynomials); % 创建网格结构  % 初始化路径度量和路径历史  path_metrics = zeros(num_states, N/R); % 路径度量矩阵  path_metrics(:, 1) = inf; % 初始化为无穷大  path_history = cell(num_states, N/R); % 路径历史单元数组  % 开始状态(全零状态)的路径度量和历史  start_state = 0;  path_metrics(start_state + 1, 1) = 0; % Matlab索引从1开始  path_history{start_state + 1, 1} = start_state;  % Viterbi算法主循环  for t = 2:N/R  for s = 0:num_states-1  % 计算到达当前状态的所有可能的前一状态  prev_states = viterbistate(trellis, s);  % 对于每个可能的前一状态,计算分支度量  for ps = prev_states  branch_metrics = hammingdist(received_signal((t-1)*R + 1:t*R), ...  encode(trellis, [path_history{ps + 1, t-1}, 0], 0, 'truncation', 'conventional')*2 - 1);  % 计算路径度量并更新如果找到更好的路径  metrics = path_metrics(ps + 1, t-1) + branch_metrics;  if metrics < path_metrics(s + 1, t)  path_metrics(s + 1, t) = metrics;  path_history{s + 1, t} = ps;  end  end  end  end  % 回溯找到最佳路径  [~, end_state] = min(path_metrics(:, end));  decoded_bits = zeros(1, N/R);  for t = N/R:-1:1  decoded_bits(t) = mod(end_state, 2); % 提取最后一位作为译码比特  end_state = floor(end_state / 2); % 移除最后一位以回溯  if t > 1  [~, end_state] = ismember(path_history{end_state + 1, t}, 0:num_states-1); % 找到前一状态  end  end  % 翻转译码比特序列,因为我们是从后向前回溯的  decoded_bits = fliplr(decoded_bits);  
end  % 注意:此代码片段是一个概念示例,可能需要针对您的特定应用场景进行调整。  
% 实际使用中,请确保所有输入参数都是正确和有效的,并考虑代码的边界情况和错误处理。  
% 此外,'encode' 函数用于模拟卷积编码过程,可能需要根据您的具体编码方案进行修改。  
% 代码中用到的 'hammingdist' 函数计算汉明距离,用于计算分支度量。如果您的信号不是二进制或者有不同的度量标准,请相应修改。

七、总结

Viterbi译码作为一种高效的纠错编码技术,在数字通信领域具有广泛的应用前景。它通过动态规划的方法在网格图中搜索最优路径,实现了在低信噪比和复杂信道条件下的可靠数据传输。卷积码和Viterbi算法在非常低的信噪比下性能不佳,复杂度随约束长度增加而增加;Turbo码是一种高级的前向纠错码,由两个或多个卷积编码器和一个随机交织器组成,使用迭代解码来逼近最大似然解码的性能,在较低信噪比下接近香农极限的性能。后续我们会介绍Turbo码原理和解码算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2778541.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

人工智能如何彻底改变身份欺诈

据 AuthenticID 称&#xff0c;近一半的企业报告合成身份欺诈有所增加&#xff0c;而生物识别欺骗和伪造 ID 欺诈尝试也有所增加。 在当今的数字化存在中&#xff0c;消费者和企业都面临着新的挑战&#xff0c;从考虑数字身份的影响到应对生成人工智能等新工具的使用和流行。与…

力扣[面试题 01.02. 判定是否互为字符重排(哈希表,位图)

Problem: 面试题 01.02. 判定是否互为字符重排 文章目录 题目描述思路复杂度Code 题目描述 思路 思路1&#xff1a;哈希表 1.若两个字符串长度不相等&#xff0c;则一定不符合题意&#xff1b; 2.创建一个map集合&#xff0c;先将字符串s1中的每一个字符与其对应的数量存入集合…

计算机算术

计算机算术 数据是什么 数据是各种各样的信息&#xff0c;如数字、文本、计算机程序、音乐、图像、符号等等&#xff0c;实际上&#xff0c;信息可以是能够被计算机存储和处理的任何事物。 位与字节 计算机中存储和处理信息的最小单位是位&#xff08;Binary digit比特&#x…

CVE-2022-0760 漏洞复现

CVE-2022-0760 NSS [HNCTF 2022 WEEK2]ohmywordpress 【CVE-2022-0760】 题目描述&#xff1a;flag在数据库里面。 开题&#xff1a; 顺着按钮一直点下去会发现出现一个按钮叫安装WordPress 安装完之后的界面&#xff0c;有一个搜索框。 F12看看network。 又出现了这个Wor…

计算机二级C语言备考学习记录

一、C语言程序的结构 1.程序的构成&#xff0c;main函数和其他函数。 程序是由main函数和其他函数构成main作为主函数&#xff0c;一个C程序里只有一个main函数其他函数可以分为系统函数和用户函数&#xff0c;系统函数为编译系统提供&#xff0c;用户函数由用户自行编写 2.…

亚马逊认证考试系列 - 知识点 - LightSail介绍

一、引言 在当今云计算的时代&#xff0c;亚马逊网络服务&#xff08;AWS&#xff09;已成为业界领先的云服务提供商。其中&#xff0c;LightSail服务是AWS为简化云计算的入门和使用而推出的一项服务。它特别适合那些想要快速搭建网站、开发环境或小型应用的用户。通过LightSa…

提升MySQL访问性能

1. 读写分离 设置多个从数据库&#xff0c;从数据库可能在多个机器中。写操作在主数据库进行主数据库提供数据的主要依据 缓解了MySQL的读压力。 主从复制原理图如下 如果对于读操作有一致性要求&#xff0c;那么读操作去主数据库即可。 2. 连接池 因为一个请求必须要…

【数学建模】【2024年】【第40届】【MCM/ICM】【C题 网球运动中的“动量”】【解题思路】

一、题目 &#xff08;一&#xff09; 赛题原文 2024 MCM Problem C: Momentum in Tennis In the 2023 Wimbledon Gentlemen’s final, 20-year-old Spanish rising star Carlos Alcaraz defeated 36-year-old Novak Djokovic. The loss was Djokovic’s first at Wimbledon…

qt-C++笔记之判断一个QLabel上有没有load图片

qt-C笔记之判断一个QLabel上有没有load图片 code review! 在Qt框架中&#xff0c;QLabel是用来显示文本或者图片的一个控件。如果你想判断一个QLabel控件上是否加载了图片&#xff0c;你可以检查它的pixmap属性。pixmap属性会返回一个QPixmap对象&#xff0c;如果没有图片被加…

2024.2.10 DMS(数据库管理系统)初体验

数据库管理系统(Database Management System)是一种操纵和管理数据库的大型软件&#xff0c;用于建立、使用和维护数据库&#xff0c;简称DBMS。它对数据库进行统一的管理和控制&#xff0c;以保证数据库的安全性和完整性。用户通过DBMS访问数据库中的数据&#xff0c;数据库管…

【笔记】Harmony学习:下载安装 DevEco Studio 开发工具IDE

IDE 安装 从官网下载DevEco Studio 安装包后进行安装&#xff0c; 安装完毕后&#xff0c;本地环境可能要配置相关工具&#xff0c;可以通过下面的诊断检测一下本地环境&#xff0c;通过蓝色“Set it up now” 可以快速安装。 1. Node.js (for ohpm) 2. ohpm 下载op的包管理&a…

【Chrono Engine学习总结】3-地型terrain

由于Chrono的官方教程在一些细节方面解释的并不清楚&#xff0c;自己做了一些尝试&#xff0c;做学习总结。 1、关于物体材质 在介绍地型之前&#xff0c;要初步了解chrono中关于材质的一些基本概念。 首先&#xff0c;最基本的材质类是ChMaterialSurface,其进一步包括&…

LeetCode---383周赛

题目列表 3028. 边界上的蚂蚁 3029. 将单词恢复初始状态所需的最短时间 I 3030. 找出网格的区域平均强度 3031. 将单词恢复初始状态所需的最短时间 II 一、边界上的蚂蚁 这题没什么好说的&#xff0c;模拟就行&#xff0c;本质就是看前缀和有几个为0。 代码如下 class S…

MySQL篇----第十八篇

系列文章目录 文章目录 系列文章目录前言一、SQL 语言包括哪几部分?每部分都有哪些操作关键二、完整性约束包括哪些?三、什么是锁?四、什么叫视图?游标是什么?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,…

【大厂AI课学习笔记】【1.6 人工智能基础知识】(1)人工智能、机器学习、深度学习之间的关系

6.1 人工智能、机器学习与深度学习的关系 必须要掌握的内容&#xff1a; 如上图&#xff1a;人工智能>机器学习>深度学习。 机器学习是人工智能的一个分支&#xff0c;该领域的主要研究对象是人工智能&#xff0c;特别是如何在经验学习中改进具体算法的性能。 深度学习…

MySQL-视图(VIEW)

文章目录 1. 什么是视图&#xff1f;2. 视图 VS 数据表3. 视图的优点4. 视图相关语法4.1 创建视图4.2 查看视图4.3 修改视图4.4 删除视图4.5 检查选项 5. 案例6. 注意事项 1. 什么是视图&#xff1f; MySQL 视图&#xff08; View&#xff09;是一种虚拟存在的表&#xff0c;同…

CVE-2018-19518 漏洞复现

CVE-2018-19518 漏洞介绍 IMAP协议&#xff08;因特网消息访问协议&#xff09;它的主要作用是邮件客户端可以通过这种协议从邮件服务器上获取邮件的信息&#xff0c;下载邮件等。它运行在TCP/IP协议之上&#xff0c;使用的端口是143。在php中调用的是imap_open函数。 PHP 的…

Open CASCADE学习|环形弹簧建模

目录 Draw Test Harness&#xff1a; C&#xff1a; 环形弹簧&#xff0c;也称为弓簧&#xff0c;是由拉伸弹簧和连接弹簧构成的。在结构上&#xff0c;环形弹簧通常包括端环、外环和内环&#xff0c;其主要参数包括弹簧的内径、外径和自由高度。环形弹簧的一个显著特点是&am…

2024年 前端JavaScript入门到精通 第一天

主要讲解JavaScript核心知识&#xff0c;包含最新ES6语法&#xff0c;从基础到API再到高级。让你一边学习一边练习&#xff0c;重点知识及时实践&#xff0c;同时每天安排大量作业&#xff0c;加深记忆&#xff0c;巩固学习成果。 1.1 基本软件与准备工作 1.2 JavaScript 案例 …

杨辉三角的变形(数学)

题目 import java.util.Scanner;public class Main {public static void main(String[] args) { // 1 // 1 1 1 // 1 2 3 2 1 // 1 3 6 7 6 3 1 // 1 4 10 16 19 16 10 4 1Scanner sc new Scanner(System.in);int n sc.nextInt();int[][] res new int[n1][2*n];for(i…