Python爬虫之文件存储#5

爬虫专栏:http://t.csdnimg.cn/WfCSx

文件存储形式多种多样,比如可以保存成 TXT 纯文本形式,也可以保存为 JSON 格式、CSV 格式等,本节就来了解一下文本文件的存储方式。

TXT 文本存储

将数据保存到 TXT 文本的操作非常简单,而且 TXT 文本几乎兼容任何平台,但是这有个缺点,那就是不利于检索。所以如果对检索和数据结构要求不高,追求方便第一的话,可以采用 TXT 文本存储。本节中,我们就来看下如何利用 Python 保存 TXT 文本文件。

1. 本节目标

本节中,我们要保存知乎上 “发现” 页面的 “热门话题” 部分,将其问题和答案统一保存成文本形式。

2. 基本实例

首先,可以用 requests 将网页源代码获取下来,然后使用 pyquery 解析库解析,接下来将提取的标题、回答者、回答保存到文本,代码如下:

import requests
from pyquery import PyQuery as pq
​
url = 'https://www.zhihu.com/explore'
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
html = requests.get(url, headers=headers).text
doc = pq(html)
items = doc('.explore-tab .feed-item').items()
for item in items:question = item.find('h2').text()author = item.find('.author-link-line').text()answer = pq(item.find('.content').html()).text()file = open('explore.txt', 'a', encoding='utf-8')file.write('\n'.join([question, author, answer]))file.write('\n' + '=' * 50 + '\n')file.close()

这里主要是为了演示文件保存的方式,因此 requests 异常处理部分在此省去。首先,用 requests 提取知乎的 “发现” 页面,然后将热门话题的问题、回答者、答案全文提取出来,然后利用 Python 提供的 open 方法打开一个文本文件,获取一个文件操作对象,这里赋值为 file,接着利用 file 对象的 write 方法将提取的内容写入文件,最后调用 close 方法将其关闭,这样抓取的内容即可成功写入文本中了。

运行程序,可以发现在本地生成了一个 explore.txt 文件,其内容如图所示。

这样热门问答的内容就被保存成文本形式了。

这里 open 方法的第一个参数即要保存的目标文件名称,第二个参数为 a,代表以追加方式写入到文本。另外,我们还指定了文件的编码为 utf-8。最后,写入完成后,还需要调用 close 方法来关闭文件对象。

3. 打开方式

在刚才的实例中,open 方法的第二个参数设置成了 a,这样在每次写入文本时不会清空源文件,而是在文件末尾写入新的内容,这是一种文件打开方式。关于文件的打开方式,其实还有其他几种,这里简要介绍一下。

  • r:以只读方式打开文件。文件的指针将会放在文件的开头。这是默认模式。

  • rb:以二进制只读方式打开一个文件。文件指针将会放在文件的开头。

  • r+:以读写方式打开一个文件。文件指针将会放在文件的开头。

  • rb+:以二进制读写方式打开一个文件。文件指针将会放在文件的开头。

  • w:以写入方式打开一个文件。如果该文件已存在,则将其覆盖。如果该文件不存在,则创建新文件。

  • wb:以二进制写入方式打开一个文件。如果该文件已存在,则将其覆盖。如果该文件不存在,则创建新文件。

  • w+:以读写方式打开一个文件。如果该文件已存在,则将其覆盖。如果该文件不存在,则创建新文件。

  • wb+:以二进制读写格式打开一个文件。如果该文件已存在,则将其覆盖。如果该文件不存在,则创建新文件。

  • a:以追加方式打开一个文件。如果该文件已存在,文件指针将会放在文件结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,则创建新文件来写入。

  • ab:以二进制追加方式打开一个文件。如果该文件已存在,则文件指针将会放在文件结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,则创建新文件来写入。

  • a+:以读写方式打开一个文件。如果该文件已存在,文件指针将会放在文件的结尾。文件打开时会是追加模式。如果该文件不存在,则创建新文件来读写。

  • ab+:以二进制追加方式打开一个文件。如果该文件已存在,则文件指针将会放在文件结尾。如果该文件不存在,则创建新文件用于读写。

4. 简化写法

另外,文件写入还有一种简写方法,那就是使用 with as 语法。在 with 控制块结束时,文件会自动关闭,所以就不需要再调用 close 方法了。这种保存方式可以简写如下:

with open('explore.txt', 'a', encoding='utf-8') as file:file.write('\n'.join([question, author, answer]))file.write('\n' + '=' * 50 + '\n')

如果想保存时将原文清空,那么可以将第二个参数改写为 w,代码如下:

with open('explore.txt', 'w', encoding='utf-8') as file:file.write('\n'.join([question, author, answer]))file.write('\n' + '=' * 50 + '\n')

上面便是利用 Python 将结果保存为 TXT 文件的方法,这种方法简单易用,操作高效,是一种最基本的保存数据的方法。

JSON 文件存储

JSON,全称为 JavaScript Object Notation, 也就是 JavaScript 对象标记,它通过对象和数组的组合来表示数据,构造简洁但是结构化程度非常高,是一种轻量级的数据交换格式。本节中,我们就来了解如何利用 Python 保存数据到 JSON 文件。

1. 对象和数组

在 JavaScript 语言中,一切都是对象。因此,任何支持的类型都可以通过 JSON 来表示,例如字符串、数字、对象、数组等,但是对象和数组是比较特殊且常用的两种类型,下面简要介绍一下它们。

对象:它在 JavaScript 中是使用花括号 {} 包裹起来的内容,数据结构为 {key1:value1, key2:value2, ...} 的键值对结构。在面向对象的语言中,key 为对象的属性,value 为对应的值。键名可以使用整数和字符串来表示。值的类型可以是任意类型。

数组:数组在 JavaScript 中是方括号 [] 包裹起来的内容,数据结构为 ["java", "javascript", "vb", ...] 的索引结构。在 JavaScript 中,数组是一种比较特殊的数据类型,它也可以像对象那样使用键值对,但还是索引用得多。同样,值的类型可以是任意类型。

所以,一个 JSON 对象可以写为如下形式:

[{"name": "Bob","gender": "male","birthday": "1992-10-18"
}, {"name": "Selina","gender": "female","birthday": "1995-10-18"
}]

由中括号包围的就相当于列表类型,列表中的每个元素可以是任意类型,这个示例中它是字典类型,由大括号包围。

JSON 可以由以上两种形式自由组合而成,可以无限次嵌套,结构清晰,是数据交换的极佳方式。

2. 读取 JSON

Python 为我们提供了简单易用的 JSON 库来实现 JSON 文件的读写操作,我们可以调用 JSON 库的 loads 方法将 JSON 文本字符串转为 JSON 对象,可以通过 dumps() 方法将 JSON 对象转为文本字符串。

例如,这里有一段 JSON 形式的字符串,它是 str 类型,我们用 Python 将其转换为可操作的数据结构,如列表或字典:

import json
​
str = '''
[{"name": "Bob","gender": "male","birthday": "1992-10-18"
}, {"name": "Selina","gender": "female","birthday": "1995-10-18"
}]
'''
print(type(str))
data = json.loads(str)
print(data)
print(type(data))

运行结果如下:

<class'str'>
[{'name': 'Bob', 'gender': 'male', 'birthday': '1992-10-18'}, {'name': 'Selina', 'gender': 'female', 'birthday': '1995-10-18'}]
<class 'list'>

这里使用 loads 方法将字符串转为 JSON 对象。由于最外层是中括号,所以最终的类型是列表类型。

这样一来,我们就可以用索引来获取对应的内容了。例如,如果想取第一个元素里的 name 属性,就可以使用如下方式:

data[0]['name']
data[0].get('name')

得到的结果都是:

Bob

通过中括号加 0 索引,可以得到第一个字典元素,然后再调用其键名即可得到相应的键值。获取键值时有两种方式,一种是中括号加键名,另一种是通过 get 方法传入键名。这里推荐使用 get 方法,这样如果键名不存在,则不会报错,会返回 None。另外,get 方法还可以传入第二个参数(即默认值),示例如下:

data[0].get('age')
data[0].get('age', 25)

运行结果如下:

None
25

这里我们尝试获取年龄 age,其实在原字典中该键名不存在,此时默认会返回 None。如果传入第二个参数(即默认值),那么在不存在的情况下返回该默认值。

值得注意的是,JSON 的数据需要用双引号来包围,不能使用单引号。例如,若使用如下形式表示,则会出现错误:

import json
​
str = '''
[{'name': 'Bob','gender': 'male','birthday': '1992-10-18'
}]
'''
data = json.loads(str)

运行结果如下:

json.decoder.JSONDecodeError: Expecting property name enclosed in double quotes: line 3 column 5 (char 8)

这里会出现 JSON 解析错误的提示。这是因为这里数据用单引号来包围,请千万注意 JSON 字符串的表示需要用双引号,否则 loads 方法会解析失败。

如果从 JSON 文本中读取内容,例如这里有一个 data.json 文本文件,其内容是刚才定义的 JSON 字符串,我们可以先将文本文件内容读出,然后再利用 loads 方法转化:

import json
​
with open('data.json', 'r') as file:str = file.read()data = json.loads(str)print(data)

运行结果如下:

[{'name': 'Bob', 'gender': 'male', 'birthday': '1992-10-18'}, {'name': 'Selina', 'gender': 'female', 'birthday': '1995-10-18'}]
3. 输出 JSON

另外,我们还可以调用 dumps 方法将 JSON 对象转化为字符串。例如,将上例中的列表重新写入文本:

import json
​
data = [{'name': 'Bob','gender': 'male','birthday': '1992-10-18'
}]
with open('data.json', 'w') as file:file.write(json.dumps(data))

利用 dumps 方法,我们可以将 JSON 对象转为字符串,然后再调用文件的 write 方法写入文本,结果如图所示。

另外,如果想保存 JSON 的格式,可以再加一个参数 indent,代表缩进字符个数。示例如下:

with open('data.json', 'w') as file:file.write(json.dumps(data, indent=2))

此时写入结果如图所示。

这样得到的内容会自动带缩进,格式会更加清晰。

另外,如果 JSON 中包含中文字符,会怎么样呢?例如,我们将之前的 JSON 的部分值改为中文,再用之前的方法写入到文本:

import json
​
data = [{'name': ' 王伟 ','gender': ' 男 ','birthday': '1992-10-18'
}]
with open('data.json', 'w') as file:file.write(json.dumps(data, indent=2))

写入结果如图所示。

可以看到,中文字符都变成了 Unicode 字符,这并不是我们想要的结果。

为了输出中文,还需要指定参数 ensure_ascii 为 False,另外还要规定文件输出的编码:

with open('data.json', 'w', encoding='utf-8') as file:file.write(json.dumps(data, indent=2, ensure_ascii=False))

写入结果如图所示。

可以发现,这样就可以输出 JSON 为中文了。

本节中,我们了解了用 Python 进行 JSON 文件读写的方法,后面做数据解析时经常会用到,建议熟练掌握。

CSV 文件存储

CSV,全称为 Comma-Separated Values,中文可以叫作逗号分隔值或字符分隔值,其文件以纯文本形式存储表格数据。该文件是一个字符序列,可以由任意数目的记录组成,记录间以某种换行符分隔。每条记录由字段组成,字段间的分隔符是其他字符或字符串,最常见的是逗号或制表符。不过所有记录都有完全相同的字段序列,相当于一个结构化表的纯文本形式。它比 Excel 文件更加简洁,XLS 文本是电子表格,它包含了文本、数值、公式和格式等内容,而 CSV 中不包含这些内容,就是特定字符分隔的纯文本,结构简单清晰。所以,有时候用 CSV 来保存数据是比较方便的。本节中,我们来讲解 Python 读取和写入 CSV 文件的过程。

1. 写入

这里先看一个最简单的例子:

import csv
​
with open('data.csv', 'w') as csvfile:writer = csv.writer(csvfile)writer.writerow(['id', 'name', 'age'])writer.writerow(['10001', 'Mike', 20])writer.writerow(['10002', 'Bob', 22])writer.writerow(['10003', 'Jordan', 21])

首先,打开 data.csv 文件,然后指定打开的模式为 w(即写入),获得文件句柄,随后调用 csv 库的 writer 方法初始化写入对象,传入该句柄,然后调用 writerow 方法传入每行的数据即可完成写入。

运行结束后,会生成一个名为 data.csv 的文件,此时数据就成功写入了。直接以文本形式打开的话,其内容如下:

id,name,age
10001,Mike,20
10002,Bob,22
10003,Jordan,21

可以看到,写入的文本默认以逗号分隔,调用一次 writerow 方法即可写入一行数据。用 Excel 打开的结果如图所示。

如果想修改列与列之间的分隔符,可以传入 delimiter 参数,其代码如下:

import csv
​
with open('data.csv', 'w') as csvfile:writer = csv.writer(csvfile, delimiter=' ')writer.writerow(['id', 'name', 'age'])writer.writerow(['10001', 'Mike', 20])writer.writerow(['10002', 'Bob', 22])writer.writerow(['10003', 'Jordan', 21])

这里在初始化写入对象时传入 delimiter 为空格,此时输出结果的每一列就是以空格分隔了,内容如下:

id name age
10001 Mike 20
10002 Bob 22
10003 Jordan 21

另外,我们也可以调用 writerows 方法同时写入多行,此时参数就需要为二维列表,例如:

import csv
​
with open('data.csv', 'w') as csvfile:writer = csv.writer(csvfile)writer.writerow(['id', 'name', 'age'])writer.writerows([['10001', 'Mike', 20], ['10002', 'Bob', 22], ['10003', 'Jordan', 21]])

输出效果是相同的,内容如下:

id,name,age
10001,Mike,20
10002,Bob,22
10003,Jordan,21

但是一般情况下,爬虫爬取的都是结构化数据,我们一般会用字典来表示。在 csv 库中也提供了字典的写入方式,示例如下:

import csv
​
with open('data.csv', 'w') as csvfile:fieldnames = ['id', 'name', 'age']writer = csv.DictWriter(csvfile, fieldnames=fieldnames)writer.writeheader()writer.writerow({'id': '10001', 'name': 'Mike', 'age': 20})writer.writerow({'id': '10002', 'name': 'Bob', 'age': 22})writer.writerow({'id': '10003', 'name': 'Jordan', 'age': 21})

这里先定义 3 个字段,用 fieldnames 表示,然后将其传给 DictWriter 来初始化一个字典写入对象,接着可以调用 writeheader 方法先写入头信息,然后再调用 writerow 方法传入相应字典即可。最终写入的结果是完全相同的,内容如下:

id,name,age  
10001,Mike,20  
10002,Bob,22  
10003,Jordan,21

这样就可以完成字典到 CSV 文件的写入了。

另外,如果想追加写入的话,可以修改文件的打开模式,即将 open 函数的第二个参数改成 a,代码如下:

import csv  
​
with open('data.csv', 'a') as csvfile:  fieldnames = ['id', 'name', 'age']  writer = csv.DictWriter(csvfile, fieldnames=fieldnames)  writer.writerow({'id': '10004', 'name': 'Durant', 'age': 22})

这样在上面的基础上再执行这段代码,文件内容便会变成:

id,name,age  
10001,Mike,20  
10002,Bob,22  
10003,Jordan,21  
10004,Durant,22

可见,数据被追加写入到文件中。

如果要写入中文内容的话,可能会遇到字符编码的问题,此时需要给 open 参数指定编码格式。比如,这里再写入一行包含中文的数据,代码需要改写如下:

import csv
​
with open('data.csv', 'a') as csvfile:fieldnames = ['id', 'name', 'age']writer = csv.DictWriter(csvfile, fieldnames=fieldnames)writer.writerow({'id': '10004', 'name': 'Durant', 'age': 22})

这里需要给 open 函数指定编码,否则可能发生编码错误。

另外,如果接触过 pandas 等库的话,可以调用 DataFrame 对象的 to_csv 方法来将数据写入 CSV 文件中。

2. 读取

我们同样可以使用 csv 库来读取 CSV 文件。例如,将刚才写入的文件内容读取出来,相关代码如下:

import csv  
​
with open('data.csv', 'r', encoding='utf-8') as csvfile:  reader = csv.reader(csvfile)  for row in reader:  print(row)

运行结果如下:

['id', 'name', 'age']  
['10001', 'Mike', '20']  
['10002', 'Bob', '22']  
['10003', 'Jordan', '21']  
['10004', 'Durant', '22']  
['10005', ' 王伟 ', '22']

这里我们构造的是 Reader 对象,通过遍历输出了每行的内容,每一行都是一个列表形式。注意,如果 CSV 文件中包含中文的话,还需要指定文件编码。

另外,如果接触过 pandas 的话,可以利用 read_csv 方法将数据从 CSV 中读取出来,例如:

import pandas as pd  
​
df = pd.read_csv('data.csv')  
print(df)

运行结果如下:

      id    name  age  
0  10001    Mike   20  
1  10002     Bob   22  
2  10003  Jordan   21  
3  10004  Durant   22  
4  10005    王伟   22

在做数据分析的时候,此种方法用得比较多,也是一种比较方便地读取 CSV 文件的方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2777119.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

5G技术对物联网的影响

随着数字化转型的加速&#xff0c;5G技术作为通信领域的一次重大革新&#xff0c;正在对物联网&#xff08;IoT&#xff09;产生深远的影响。对于刚入行的朋友们来说&#xff0c;理解5G技术及其对物联网应用的意义&#xff0c;是把握行业发展趋势的关键。 让我们简单了解什么是…

12 ABC串口接收原理与思路

1. 串口接收原理 基本原理&#xff1a;通过数据起始位判断要是否要开始接收的数据&#xff0c;通过采样的方式确定每一位数据是0还是1。 如何判断数据起始位到来&#xff1a;通过边沿检测电路检测起始信号的下降沿 如何采样&#xff1a;一位数据采多次&#xff0c;统计得到高…

算法——数论——GCD和LCM

目录 GCD&#xff08;最大公约数&#xff09; 1、欧几里得算法 LCM&#xff08;最小公倍数&#xff09; 一、试题 算法训练 抗击虫群 GCD&#xff08;最大公约数&#xff09; 整数 a 和 b 的最大公约数是指能同时整除 a 和 b 的最大整数&#xff0c;记为 gcd(a,b)-a的因子和…

C# 字体大小的相关问题

设置字体大小无法这么写&#xff0c; button1.Font.Size 20&#xff1b; 这个是只读属性&#xff1b; 把字体大小改为16&#xff0c; button2.Font new Font(button2.Font.Name, 16); 程序运行的时候先看一下窗体和控件的默认字体尺寸&#xff0c;都是9&#xff1b;然后点b…

v-if 和v-show 的区别

第074个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使用&#xff0c;computed&a…

【大厂AI课学习笔记】【1.5 AI技术领域】(7)图像分割

今天学习到了图像分割。 这是我学习笔记的脑图。 图像分割&#xff0c;Image Segmentation&#xff0c;就是将数字图像分割为若干个图像子区域&#xff08;像素的集合&#xff0c;也被称为超像素&#xff09;&#xff0c;改变图像的表达方式&#xff0c;以更容易理解和分析。 …

春晚刘谦第二个魔术原理讲解

目录 1. 先说一下步骤&#xff1a;2. 原理讲解&#xff1a;2.1 第一步分析2.1 第二步分析2.1 第三步分析2.1 第四步分析2.1 第五步分析2.1 第六步分析2.1 第七步分析2.1 第八步分析2.1 第七步重新分析 小结&#xff1a; 首先&#xff0c;先叠个甲。我本人很喜欢刘谦老师&#x…

大水仙花数求解

输入位数&#xff0c;求解水仙花数。暴力求解&#xff0c;位数如果太多&#xff0c;会超时。 思路&#xff1a; &#xff08;1&#xff09;11333355和33331155看上去是不一样的两个数&#xff0c;但是它们又一样&#xff0c;因为相同数字出现的次数一样。 &#xff08;2&…

大模型学习 一

https://www.bilibili.com/video/BV1Kz4y1x7AK/?spm_id_from333.337.search-card.all.click GPU 计算单元多 并行计算能力强 指数更重要 A100 80G V100 A100 海外 100元/时 单卡 多卡并行&#xff1a; 单机多卡 模型并行 有资源的浪费 反向传播 反向传播&#xff08;B…

《MySQL 简易速速上手小册》第6章:MySQL 复制和分布式数据库(2024 最新版)

文章目录 6.1 设置和管理复制6.1.1 基础知识6.1.2 重点案例&#xff1a;使用 Python 设置 MySQL 主从复制6.1.3 拓展案例 1&#xff1a;自动故障转移6.1.4 拓展案例 2&#xff1a;设置双主复制 6.2 复制的类型和策略6.2.1 基础知识6.2.2 重点案例&#xff1a;使用 Python 设置半…

Kafka 入门介绍

目录 一. 前言 二. 使用场景 三. 分布式的流平台 四. Kafka 的基本术语 4.1. 主题和日志 &#xff08;Topic 和 Log&#xff09; 4.2. 分布式&#xff08;Distribution&#xff09; 4.3. 异地数据同步技术&#xff08;Geo-Replication&#xff09; 4.4. 生产者&#xf…

SpringBoot源码解读与原理分析(二十)IOC容器的刷新(一)

文章目录 7 IOC容器的刷新7.1 初始化前的预处理7.1.1 初始化属性配置7.1.2 初始化早期事件的集合 7.2 初始化BeanFactory7.2.1 注解驱动的refreshBeanFactory7.2.2 XML驱动的refreshBeanFactory7.2.3 获取BeanFactory 7.3 BeanFactory的预处理配置7.3.1 ApplicationContextAwar…

Spring基础 - Spring简单例子引入Spring要点

Spring基础 - Spring简单例子引入Spring要点 设计一个Spring的Hello World 设计一个查询用户的案例的两个需求&#xff0c;来看Spring框架帮我们简化了什么开发工作 pom依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"htt…

FastJson、Jackson使用AOP切面进行日志打印异常

FastJson、Jackson使用AOP切面进行日志打印异常 一、概述 1、问题详情 使用FastJson、Jackson进行日志打印时分别包如下错误&#xff1a; 源码&#xff1a; //fastjon log.info("\nRequest Info :{} \n"&#xff0c; JSON.toJSONString(requestInfo)); //jackson …

106. 从中序与后序遍历序列构造二叉树 - 力扣(LeetCode)

题目描述 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 题目示例 输入&#xff1a;inorder [9,3,15,20,7], postorder [9,15,7,20,3] 输出&a…

【正式】今年第一篇CSDN(纯技术教学)

一、文件上传简介 文件上传漏洞是指用户上传了一个可执行的脚本文件&#xff08;木马、病毒、恶意脚本、webshell等&#xff09;&#xff0c;并通过此脚本文件获得了执行服务器端命令的能力。上传点一般出现在头像、导入数据、上传压缩包等地方&#xff0c;由于程序对用户上传…

《Git 简易速速上手小册》第10章:未来趋势与扩展阅读(2024 最新版)

文章目录 10.1 Git 与开源社区10.1.1 基础知识讲解10.1.2 重点案例&#xff1a;Python 社区使用 Git10.1.3 拓展案例 1&#xff1a;Git 在大型开源项目中的角色10.1.4 拓展案例 2&#xff1a;支持开源项目的 Git 托管平台 10.2 新兴技术与 Git 的整合10.2.1 基础知识讲解10.2.2…

《剑指Offer》笔记题解思路技巧优化 Java版本——新版leetcode_Part_1

《剑指Offer》笔记&题解&思路&技巧&优化_Part_1 &#x1f60d;&#x1f60d;&#x1f60d; 相知&#x1f64c;&#x1f64c;&#x1f64c; 相识&#x1f622;&#x1f622;&#x1f622; 开始刷题1. LCR 120. 寻找文件副本——数组中重复元素2. LCR 121. 寻找目…

Amazon Dynamo学习总结

目录 一、Amazon Dynamo的问世 二、Amazon Dynamo主要技术概要 三、数据划分算法 四、数据复制 五、版本控制 六、故障处理 七、成员和故障检测 一、Amazon Dynamo的问世 Amazon Dynamo是由亚马逊在2007年开发的一种高度可扩展和分布式的键值存储系统&#xff0c;旨在解…

Android13多媒体框架概览

Android13多媒体框架概览 Android 多媒体框架 Android 多媒体框架旨在为 Java 服务提供可靠的接口。它是一个系统&#xff0c;包括多媒体应用程序、框架、OpenCore 引擎、音频/视频/输入的硬件设备&#xff0c;输出设备以及一些核心动态库&#xff0c;比如 libmedia、libmedi…