图神经网络与图表示学习: 从基础概念到前沿技术

目录

  • 前言
  • 1 图的形式化定义和类型
    • 1.1 图的形式化定义
    • 1.2 图的类型
  • 2 图表示学习
    • 2.1 DeepWalk: 融合语义相似性与图结构
    • 2.2 Node2Vec: 灵活调整随机游走策略
    • 2.3 LINE: 一阶与二阶邻接建模
    • 2.4 NetMF: 矩阵分解的可扩展图表示学习
    • 2.5 Metapath2Vec: 异构图的全面捕捉
  • 3 图神经网络系列
    • 3.1 基本组成和分类
    • 3.2 典型模型
  • 4 图神经网络预训练
    • 4.1 基于生成模型的预训练
    • 4.2 基于对比学习的预训练
    • 4.3 具体模型
  • 结语

前言

随着复杂网络数据的快速增长,图数据的处理和分析成为机器学习领域的一个重要方向。图神经网络(Graph Neural Networks, GNNs)和图表示学习技术逐渐崭露头角,成为处理图数据的有效工具。本文将深入探讨图的形式化定义、图表示学习的基本概念以及一系列先进的图神经网络模型。

1 图的形式化定义和类型

1.1 图的形式化定义

图(Graph)是一种抽象数据结构,由节点和边构成。节点表示图中的元素,边表示节点之间的关系。图的形式化定义可以表示为:
G = ( V , E ) G=(V,E) G=(V,E)
其中, V V V是节点的集合, E E E是边的集合。节点和边的具体性质可以根据应用场景的需求而定。

1.2 图的类型

根据边的方向和节点之间的关系,图可以分为不同类型。

有向图(Directed Graph

有向图中,边是有方向的,从一个节点指向另一个节点。形式化表示为:
G = ( V , E , ρ ) G=(V,E,ρ) G=(V,E,ρ)

其中,$ρ:E→V×V $是边到节点的映射,表示每条边连接一个起始节点和一个目标节点。

无向图(Undirected Graph

在无向图中,边是无方向的,即从一个节点到另一个节点没有箭头。形式化表示为:
G = ( V , E , δ ) G=(V,E,δ) G=(V,E,δ)

其中, δ : E → { { u , v } ∣ u , v ∈ V } δ:E→\{\{u,v\}∣u,v∈V\} δ:E{{u,v}u,vV} 是边到节点对的映射,表示每条边连接两个节点。

循环图和无环图

根据图中是否存在环路,图可以进一步分为循环图和无环图。

循环图:包含至少一个环路的图。
无环图:不包含任何环路的图。

这些基本概念为我们理解图的特性以及后续的图表示学习提供了基础。

图的形式化定义和类型为我们提供了处理复杂关系数据的工具,为后续深入研究图表示学习奠定了理论基础。通过对节点和边的组合,我们能够更好地理解和描述真实世界中的复杂关系网络。

2 图表示学习

图表示学习旨在利用表示学习技术,将图映射到向量空间,以保留图的结构特征和语义特征。其中,基于随机游走的邻居序列是一种常见的方法,包括DeepWalk、LINE、Node2Vec、NetMF以及Metapath2Vec。这些方法通过模拟节点间的随机游走来捕捉相似性结构上下文,为图的向量化表示奠定了基础。

2.1 DeepWalk: 融合语义相似性与图结构

在这里插入图片描述

DeepWalk将自然语言处理中相似上下文的词具有相似语义的思想引入图领域。在图中,DeepWalk通过随机游走采样邻居节点序列,并运用Word2Vec等算法进行学习,使得相似结构上下文的节点能够在向量空间中保持相似性。这为图节点的向量表示提供了有效手段,通过模拟节点的随机游走,DeepWalk捕捉了图的语义特征与结构特征的融合。

2.2 Node2Vec: 灵活调整随机游走策略

Node2Vec更进一步,灵活地结合了内容相似性和结构相似性的考虑。通过调整随机游走的策略,包括广度优先搜索(BFS)和深度优先搜索(DFS),Node2Vec能够捕捉不同层次的邻居节点信息,为节点表示学习提供更具区分度的向量表示。这使得Node2Vec在不同的图结构中能够更好地适应,并提高了节点表示的表达能力。

2.3 LINE: 一阶与二阶邻接建模

在这里插入图片描述

LINE(Large-scale Information Network Embedding)通过一阶近似和二阶近似的建模更细致地表达邻接节点的信息。该方法旨在保留节点邻居的全局结构特征,通过在向量空间中捕捉一阶和二阶邻接关系,使得节点向量更好地捕捉图的拓扑结构。LINE的特点在于其对全局结构的敏感性,从而提高了对图形状的理解和表示的准确性。

2.4 NetMF: 矩阵分解的可扩展图表示学习

NetMF采用基于矩阵分解的图表示学习框架,通过考虑节点之间的邻接关系将图数据映射到低维向量空间。这种方法在保留全局结构信息的同时,具有较好的可扩展性,适用于大规模图数据。NetMF的矩阵分解思想使得图的向量化表示更加高效,为处理大型图数据提供了有效的解决方案。

2.5 Metapath2Vec: 异构图的全面捕捉

Metapath2Vec专注于处理异构图,结合了图结构和语义信息。通过在异构上下文中进行元路径(metapath)的随机游走,该方法更全面地捕捉了图的复杂结构,使得异构图中不同类型节点的关系得以有效表示。Metapath2Vec的方法为异构图领域提供了一种全面且有效的图表示学习策略。

这一系列基于随机游走的邻居序列方法为图表示学习提供了多样而灵活的工具,能够有效地捕捉图的结构和语义特征,为后续的图神经网络模型提供了有力的基础。

3 图神经网络系列

图神经网络是图表示学习的重要分支,涵盖了丰富的模型和技术。
在这里插入图片描述

3.1 基本组成和分类

图神经网络通常包括信息传播模块、聚合器、迭代器以及输出模块,以半监督方式实现图的表示学习。

图神经网络的分类主要分为transductive setting和inductive setting两种。区别在于预测的样本是否在训练中见过,这为不同场景下的应用提供了更多灵活性。

3.2 典型模型

  • 图卷积神经网络(GCN):通过邻居节点的信息聚合实现图的卷积操作,有效捕捉节点的全局结构信息。
  • 图变分自编码器(VGAE):通过引入随机变量,对图的结构进行潜在表示学习。
  • 图注意力网络(GAT):通过引入注意力机制,允许节点对不同邻居节点赋予不同的权重,提升模型对复杂图结构的表达能力。
  • GraphSAGE:对邻居节点进行随机采样,从而降低计算复杂度,同时保留图的局部信息。
  • GTN(Graph Transformer Network):专注于处理知识图谱中的异构图,结合图的层次化结构进行信息建模。

4 图神经网络预训练

预训练技术是图神经网络研究中的一个热门方向,通过预训练可以提高模型的泛化能力和学习效果。

4.1 基于生成模型的预训练

基于生成模型的预训练是一种通过模拟图数据的生成过程来提高模型对图结构理解的策略。这种方法的核心思想是通过生成模型学习图的概率分布,从而能够更好地捕捉图的全局结构和节点之间的关系。这为模型在后续任务中更准确地表达图数据奠定了基础。

4.2 基于对比学习的预训练

基于对比学习的预训练方法通过构造正负例进行对比学习,使得模型能够更好地学习图中节点之间的关系。通过比较节点与其邻居节点、上下文节点之间的相似性,模型能够更全面地捕捉图的局部结构和全局特征。这为模型提供了更具判别力的表示,有助于提高模型的泛化能力。

4.3 具体模型

GPT-GNN

GPT-GNN是一种将预训练任务和下游任务结合的图神经网络模型。通过使用GPT(Generative Pre-trained Transformer)作为预训练模型,GPT-GNN能够在图数据上进行预训练,捕捉图的全局特征和节点关系。这样的预训练任务提高了模型的表达能力,并使其更适用于各种图相关的任务。

GCC(Graph Contrastive Coding)
在这里插入图片描述

GCC采用对比学习的思想,从无标注输入图数据中构造正负例进行对比学习。通过将节点与其邻居节点之间的关系进行对比,GCC能够优化图表示的质量,提高了模型对图结构的理解。这一方法尤其适用于大规模图数据,为图表示学习提供了一种有效的优化路径。

这些基于预训练的方法使得图神经网络更具泛化能力,能够在未标注的大规模图数据上进行学习,并在各种下游任务中取得更好的性能。这也为图神经网络在实际应用中的广泛推广提供了有力的支持。

结语

图神经网络和图表示学习技术正在成为处理复杂图数据的重要工具。从基础的图的形式化定义到前沿的图神经网络模型,我们深入探讨了图表示学习的关键概念和方法。未来,随着研究的不断深入,图神经网络将在社交网络分析、推荐系统、生物信息学等领域发挥更为广泛的作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2776769.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

深入实战:ElasticSearch的Rest API与迭代器模式在高效查询中的应用

在我们公司,大多数Java开发工程师在项目中都有使用Elasticsearch的经验。通常,他们会通过引入第三方工具包或使用Elasticsearch Client等方式来进行数据查询。然而,当涉及到基于Elasticsearch Rest API的/_sql?formatjson接口时,…

通过Harbor构建docker私服仓库

Harbor是一个用于存储和分发Docker镜像的企业级Registry服务器,它扩展了开源的Docker Distribution,通过添加一些企业必需的功能特性,如安全、标识和管理等。Harbor由VMware公司开发并开源,旨在帮助用户迅速搭建一个企业级的Docke…

C语言每日一题(52)单值二叉树

力扣网 965 单值二叉树 题目描述 如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树。 只有给定的树是单值二叉树时,才返回 true;否则返回 false。 示例 1: 输入:[1,1,1,1,1,null,1] 输出:t…

商汤科技「日日新4.0」正式发布,多维度升级大模型体系,能力比肩GPT-4!

文 | BFT机器人 近日,商汤科技正式发布「日日新SenseNova 4.0」,宣告大模型体系多维度全面升级。这款模型具备更全面的知识覆盖、更可靠的推理能力,以及更优越的长文本理解和数字推理能力。同时,它还支持跨模态交互,为…

C++初阶篇----新手进村

目录 一、什么是C二、C关键字三、命名空间3.1命名空间的定义3.2命名空间的使用 四、C输入和输出五、缺省参数5.1缺省参数的概念5.2缺省参数的分类 六、函数重载6.1函数重载的概念6.2函数重载的原理----名字修饰 七、引用7.1引用概念7.2引用特性7.3常引用7.4引用的使用7.5传值、…

解析十六进制雷达数据格式:解析雷达数据长度。

以Cat62格式雷达数据为例,十六进制雷达数据部分代码: 3e0120bf7da4ffee0085 雷达数据长度使用4个字符(2个字节)标识,在这里是“0120”,转换为十进制数为288。 雷达数据长度父类: base_length_…

Easy Excel动态表头的实现

步骤: 1.查找官方API文档理解实现 2.实现融入到代码里面 一:Easy Excel动态头实时生成头写入 动态头实时生成头写入 二:实现 目的:实现表头为,第一列是固定列,第二列为动态生成的时间段的每一天的日期…

《MySQL 简易速速上手小册》第7章:MySQL监控和日志分析(2024 最新版)

文章目录 7.1 配置和使用 MySQL 监控工具7.1.1 基础知识7.1.2 重点案例:使用 Python 和 Prometheus 监控 MySQL 性能7.1.3 拓展案例 1:自动化 MySQL 慢查询日志分析7.1.4 拓展案例 2:实时警报系统 7.2 解读 MySQL 日志文件7.2.1 基础知识7.2.…

Linux网络编程——udp套接字

本章Gitee地址&#xff1a;udp套接字 文章目录 创建套接字绑定端口号读取数据发送数据聊天框输入框 创建套接字 #include <sys/types.h> #include <sys/socket.h> int socket(int domain, int type, int protocol);int domain参数&#xff1a;表面要创建套接字的域…

07 A B 从计数器到可控线性序列机

07. A.从计数器到可控线性序列机 让LED灯按照亮0.25秒。灭0.75秒的状态循环亮灭让LED灯按照亮0.25秒&#xff0c;灭0.5秒&#xff0c;亮0.75秒&#xff0c;灭1秒的状态循环亮灭让LED灯按照指定的亮灭模式亮灭&#xff0c;亮灭模式未知&#xff0c;由用户随即指定。以0.25秒为一…

Vuex介绍和使用

1. 什么是Vuex Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式和库。它解决了在大型 Vue.js 应用程序中共享和管理状态的问题&#xff0c;使得状态管理变得更加简单、可预测和可维护。 在 Vue.js 应用中&#xff0c;组件之间的通信可以通过 props 和事件进行&#xff0c…

Java基础常见面试题总结-集合(一)

常见的集合有哪些&#xff1f; Java集合类主要由两个接口Collection和Map派生出来的&#xff0c;Collection有三个子接口&#xff1a;List、Set、Queue。 Java集合框架图如下&#xff1a; List代表了有序可重复集合&#xff0c;可直接根据元素的索引来访问&#xff1b;Set代表…

Unity类银河恶魔城学习记录5-3 P64 Foundation of Skill System源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili SkillManager.cs using System.Collections; using System.Collections.G…

(1)短距离(<10KM)

文章目录 1.1 Bluetooth 1.2 CUAV PW-Link 1.3 ESP8266 wifi telemetry 1.4 ESP32 wifi telemetry 1.5 FrSky telemetry 1.6 Yaapu双向遥测地面站 1.7 HOTT telemetry 1.8 MSP(MultiWii 串行协议)(4.1 版) 1.9 MSP (version 4.2) 1.10 SiK Radio v1 1.11 SiK Radio …

速过计算机二级python——第9讲 详解第 2 套真题

第9讲 详解第 2 套真题 基本编程题【15 分】简单应用题【25 分】综合应用题【20 分】**问题 1**【10 分】:**问题 2【10 分】:**基本编程题【15 分】 考生文件夹下存在一个文件 PY101.py,请写代码替换横线,不修改其他代码,实现以下功能:【5 分】题目: import __________ b…

算法---回溯(正文)

1.什么是回溯&#xff1f; 回溯算法的定义就是和暴力枚举一样枚举所有可能并加撤回&#xff0c;也能和暴力一样去掉一些重复&#xff08;在之前就被筛出&#xff0c;但还要枚举这个&#xff0c;我们可以跳过这个了---------这个就是回溯剪枝&#xff09;。但为什么回溯不是暴力…

Python实现文本情感分析

前言 文本情感分析是一种重要的自然语言处理(NLP)任务&#xff0c;旨在从文本数据中推断出情感信息&#xff0c;例如正面、负面或中性情感。它在社交媒体分析、产品评论、市场调研等领域都有广泛的应用。本文将详细介绍如何使用Python进行文本情感分析&#xff0c;包括基础概念…

【从零开始学设计模式】第四章_抽象工厂模式(与工厂方法模式区分)

第四章_抽象工厂模式&#xff08;与工厂模式区分&#xff09; 1.介绍 1.1定义 为访问类提供一个创建一组相关或相互依赖对象的接口&#xff0c;且访问类无须指定所要产品的具体类 就能得到同族的不同等级的产品的模式结构&#xff1b; 1.2解决的问题 主要解决接口选择的问…

解析十六进制雷达数据格式:解析雷达数据类型。

以Cat62格式雷达数据为例&#xff0c;十六进制雷达数据部分代码&#xff1a; 3e0120bf7da4ffee0085 雷达数据使用2个字符&#xff08;1个字节&#xff09;标识&#xff0c;在这里是“3e”&#xff0c;转换为十进制数为62。 雷达数据类型父类&#xff1a; base_header_process…

Git简单了解

文章目录 1、Git概述2、Git下载与安装3、Git代码托管服务3.1、使用码云托管服务 1、Git概述 什么是Git Git是一个分布式版本控制工具&#xff0c;主要用于管理开发过程中的源代码文件&#xff08;Java类、xml文件、html页面等&#xff09;&#xff0c;在软件开发过程中被广泛使…