Modern C++ 内存篇1 - std::allocator VS pmr

大年三十所写,看到就点个赞吧!祝读者们龙年大吉!当然有问题欢迎评论指正。
在这里插入图片描述

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. 前言

从今天起我们开始内存相关的话题,内存是个很大的话题,一时不知从何说起。内存离不开allocator,我们就从allocator开始吧。allocator目前有两种:std::allocator, std::pmr::polymorphic_allocator,各有优缺点。
上来就长篇大论容易显得枯燥,我们还是抛出一个例子然后提出问题,通过问题慢慢深入吧。

2. 分配器例子

下面这个例子是我很久以前从一个网站上copy下来的。是个不错的用来快速学习的例子。作者当时留了个疑问没解决:为什么预分配内存的pmr反而效率更低哪?
这也是本节我们要解决的问题,从中也可以学到allocator和polymorphic_allocator的优缺点对比。

#include<iostream>
#include<memory_resource>
#include<vector>
#include "../PerfSum.hpp"
using namespace std;void TestPmrVec(){char buffer[1000000*4] = {0};std::pmr::monotonic_buffer_resource mbr{ std::data(buffer), std::size(buffer) };std::pmr::polymorphic_allocator<int> pa{&mbr};std::pmr::vector<int> vec{pa};//vec.push_back(0);//vec.push_back(1);PerfSum t;for(int i=0;i<1000000;i++){vec.push_back(i);}std::cout<<"End"<<std::endl;}void TestStdVec(){std::vector<int> vec ;PerfSum t;//vec.push_back(0);//vec.push_back(1);for(int i=0;i<1000000;i++){vec.push_back(i);}std::cout<<"End"<<std::endl;}int main() {std::cout<<"std vector cost:"<<std::endl;TestStdVec();std::cout<<"pmr vector cost:"<<std::endl;TestPmrVec();
}

其中PerfSum.hpp在《Modern C++ idiom3:RAII》中有提到。编译运行结果:

[mzhai@std_polymorphic_pmr]$ g++ compare_speed.cpp -std=c++17 -g
[mzhai@std_polymorphic_pmr]$ ./a.out
std vector cost:
Endtook 19171 microseconds.
pmr vector cost:
Endtook 56134 microseconds.

可见pmr反而比普通的vector慢了大约3倍。
这里我还是坚持我一贯的写作风格:先preview结果给大家,尽量一句话说明白,没时间的读者可以节约时间去干点别的,有时间且有兴趣了解细节的读者可以慢慢往下看。
preview:虽然pmr预分配的内存空间,但是后面vector既有capacity不够时需要copy/move旧的数据到新分配的空间去,pmr::vector是一个个元素move过去的;而普通vector是调用memmove把所有数据一股脑move过去的。

注意:pmr是c++17开始才有的standard library features, gcc从9.1开始支持。

3. pmr慢的原因

启动perf, 查热点:

[mzhai@std_polymorphic_pmr]$ sudo sysctl -w kernel.kptr_restrict=0
sudo sysctl -w kernel.perf_event_paranoid=0
[sudo] password for mzhai:
kernel.kptr_restrict = 0
kernel.perf_event_paranoid = 0
[mzhai@std_polymorphic_pmr]$ perf record -a -g ./a.out
std vector cost:
Endtook 17302 microseconds.
pmr vector cost:
Endtook 58350 microseconds.
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.100 MB perf.data (369 samples) ]
[mzhai@std_polymorphic_pmr]$ perf report

在这里插入图片描述
找到__uninitialized_copy_a的实现,我的机器在目录/usr/include/c++/11/bits/stl_uninitialized.h中:

请添加图片描述
从perf report能隐约看出调用栈,__uninitialized_copy_a是从push_back -> _M_realloc_insert 调过来的,从名字猜也能猜到是vector旧的分配的空间不够了需要reallocate, 分配完新的空间后需要调用__uninitialized_copy_a把旧的数据copy或move过来,但是重点是:这里竟然是for循环,是一个个copy或move过来的!

4. std::allocator快的原因

作为对比,我们查下std::vector 空间不够是怎么做的?
读者可自行调试TestStdVec,我这里直接上代码:

#0  std::__relocate_a_1<int, int> (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc) at /usr/include/c++/11/bits/stl_uninitialized.h:1012
#1  0x000000000040451f in std::__relocate_a<int*, int*, std::allocator<int> > (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc, __alloc=...)at /usr/include/c++/11/bits/stl_uninitialized.h:1046
#2  0x000000000040423f in std::vector<int, std::allocator<int> >::_S_do_relocate (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc, __alloc=...)at /usr/include/c++/11/bits/stl_vector.h:456
#3  0x0000000000403e5d in std::vector<int, std::allocator<int> >::_S_relocate (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc, __alloc=...)at /usr/include/c++/11/bits/stl_vector.h:469
#4  0x000000000040376a in std::vector<int, std::allocator<int> >::_M_realloc_insert<int const&> (this=0x7fffffffdb70, __position=0)at /usr/include/c++/11/bits/vector.tcc:468
#5  0x0000000000402f24 in std::vector<int, std::allocator<int> >::push_back (this=0x7fffffffdb70, __x=@0x7fffffffdb3c: 2)

请添加图片描述
直接调用__builtin_memmove把旧数据一股脑memmove过去,能不快吗?!
可能有读者有一点点疑问:想__builtin_memmove真的调用memmove吗?简单看下汇编就知道啦。请添加图片描述

5. 何时调用memmove何时调用for循环

通过上面的分析,我们现在知道了pmr慢而普通allocator快的原因了,接着新的问题来了:为什么pmr不走memmove? 什么条件下走memmove哪?
在这里插入图片描述

/usr/include/c++/11/bits/vector.tcc
423   template<typename _Tp, typename _Alloc>424     template<typename... _Args>425       void426       vector<_Tp, _Alloc>::427       _M_realloc_insert(iterator __position, _Args&&... __args)434     {458 #if __cplusplus >= 201103L459       if _GLIBCXX17_CONSTEXPR (_S_use_relocate())460         {461           __new_finish = _S_relocate(__old_start, __position.base(),462                      __new_start, _M_get_Tp_allocator());463464           ++__new_finish;465466           __new_finish = _S_relocate(__position.base(), __old_finish,467                      __new_finish, _M_get_Tp_allocator());468         }469       else470 #endif471         {472           __new_finish473         = std::__uninitialized_move_if_noexcept_a474         (__old_start, __position.base(),475          __new_start, _M_get_Tp_allocator());476477           ++__new_finish;478479           __new_finish480         = std::__uninitialized_move_if_noexcept_a481         (__position.base(), __old_finish,482          __new_finish, _M_get_Tp_allocator());483         }

关键点在_S_use_relocate()的值,此函数的定义如下:

/usr/include/c++/11/bits/stl_vector.h430       static constexpr bool431       _S_nothrow_relocate(true_type)432       {433     return noexcept(std::__relocate_a(std::declval<pointer>(),434                       std::declval<pointer>(),435                       std::declval<pointer>(),436                       std::declval<_Tp_alloc_type&>()));437       }438439       static constexpr bool440       _S_nothrow_relocate(false_type)441       { return false; }442443       static constexpr bool444       _S_use_relocate()445       {446     // Instantiating std::__relocate_a might cause an error outside the447     // immediate context (in __relocate_object_a's noexcept-specifier),448     // so only do it if we know the type can be move-inserted into *this.449     return _S_nothrow_relocate(__is_move_insertable<_Tp_alloc_type>{});450       }
  1. 首先看__is_move_insertable<_Tp_alloc_type>{},无论_Tp_alloc_type是std::allocator 还是std::pmr::polymorphic_allocator,结果是true.
785   template<typename _Alloc>
786     struct __is_move_insertable
787     : __is_alloc_insertable_impl<_Alloc, typename _Alloc::value_type>::type
788     { };
789
790   // std::allocator<_Tp> just requires MoveConstructible
791   template<typename _Tp>
792     struct __is_move_insertable<allocator<_Tp>>
793     : is_move_constructible<_Tp>
794     { };

std::allocator匹配后者(791行),is_move_constructible为true;
pmr匹配前者(785行), 匹配下面的两者之一。
此处用了SFINAE思想,如果_Alloc能用_Tp做参数类型构造一个_ValueT*对象,则匹配true的这个模板,否则false, 分别对应__is_move_insertable的结果此处用了SFINAE思想,如果_Alloc能用_Tp做参数类型构造一个_ValueT*对象,则匹配true的这个模板,否则false, 分别对应__is_move_insertable的结果。std::allocator及polymorphic_allocator都有construct函数,构造int对象没问题。
2. 看std::__relocate_a是否抛出异常,__relocate_a会看__relocate_a_1是否抛出异常,而__relocate_a_1会看__relocate_object_a是否抛出异常,__relocate_object_a是否抛出异常取决于:

984   template<typename _Tp, typename _Up, typename _Allocator>985     inline void986     __relocate_object_a(_Tp* __restrict __dest, _Up* __restrict __orig,987             _Allocator& __alloc)988     noexcept(noexcept(std::allocator_traits<_Allocator>::construct(__alloc,989              __dest, std::move(*__orig)))990          && noexcept(std::allocator_traits<_Allocator>::destroy(991                 __alloc, std::__addressof(*__orig))))

std::allocator_traits<_Allocator>::construct 取决于 std::is_nothrow_constructible<_Up, _Args…>::value
std::allocator_traits<_Allocator>::destroy 取决于 is_nothrow_destructible<_Up>::value

以上仅当所有情况都是noexcept为true才会走_S_relocate的分支(不走__uninitialized_move_if_noexcept_a)。

不过除此之外__relocate_a_1还有一个特例:

1000   template<typename _Tp, typename = void>
1001     struct __is_bitwise_relocatable
1002     : is_trivial<_Tp> { };
1003
1004   template <typename _Tp, typename _Up>
1005     inline __enable_if_t<std::__is_bitwise_relocatable<_Tp>::value, _Tp*>
1006     __relocate_a_1(_Tp* __first, _Tp* __last,
1007            _Tp* __result, allocator<_Up>&) noexcept
1008     {
1009       ptrdiff_t __count = __last - __first;
1010       if (__count > 0)
1011     __builtin_memmove(__result, __first, __count * sizeof(_Tp));
1012       return __result + __count;
1013     }

如果_Tp(我的例子里是int)是trivial的 且 分配器是std::allocator,则__relocate_a_1是noexcept的,则走_S_relocate的分支(不走__uninitialized_move_if_noexcept_a)

草草的画了一个流程图(大家凑合看):
在这里插入图片描述

上面两条捋了一遍_S_use_relocate()的结果, 但并不是它是true就一定用memmove,

/usr/include/c++/11/bits/stl_vector.h452       static pointer453       _S_do_relocate(pointer __first, pointer __last, pointer __result,454              _Tp_alloc_type& __alloc, true_type) noexcept455       {456     return std::__relocate_a(__first, __last, __result, __alloc);457       }458459       static pointer460       _S_do_relocate(pointer, pointer, pointer __result,461              _Tp_alloc_type&, false_type) noexcept462       { return __result; }463464       static pointer465       _S_relocate(pointer __first, pointer __last, pointer __result,466           _Tp_alloc_type& __alloc) noexcept467       {468     using __do_it = __bool_constant<_S_use_relocate()>;469     return _S_do_relocate(__first, __last, __result, __alloc, __do_it{});470       }

459行永远也走不到,因为_S_use_relocate()位true才会调用到这,而其值为true则一定匹配452行的函数特化版本。
__relocate_a最终调用到__relocate_a_1,上面提到过它有两个版本:
只有_Tp是trivial 且 用std::allocator 才会调用memmove。

1004   template <typename _Tp, typename _Up>
1005     inline __enable_if_t<std::__is_bitwise_relocatable<_Tp>::value, _Tp*>
1006     __relocate_a_1(_Tp* __first, _Tp* __last,
1007            _Tp* __result, allocator<_Up>&) noexcept
1008     {
1009       ptrdiff_t __count = __last - __first;
1010       if (__count > 0)
1011     __builtin_memmove(__result, __first, __count * sizeof(_Tp));
1012       return __result + __count;
1013     }
1014
1015   template <typename _InputIterator, typename _ForwardIterator,
1016         typename _Allocator>
1017     inline _ForwardIterator
1018     __relocate_a_1(_InputIterator __first, _InputIterator __last,
1019            _ForwardIterator __result, _Allocator& __alloc)
1020     noexcept(noexcept(std::__relocate_object_a(std::addressof(*__result),
1021                            std::addressof(*__first),
1022                            __alloc)))
1023     {
1024       typedef typename iterator_traits<_InputIterator>::value_type
1025     _ValueType;
1026       typedef typename iterator_traits<_ForwardIterator>::value_type
1027     _ValueType2;
1028       static_assert(std::is_same<_ValueType, _ValueType2>::value,
1029       "relocation is only possible for values of the same type");
1030       _ForwardIterator __cur = __result;
1031       for (; __first != __last; ++__first, (void)++__cur)

6. 看一个简单的class的例子

上面我用的是int,下面用一个简单的类看看,验证下上面的流程图。
我就不分析了,大家执行代码看结果来理解吧。

#include<iostream>
#include<memory_resource>
#include<vector>
#include "../PerfSum.hpp"
using namespace std;struct MyClass{MyClass(int _i):i(_i) {}int i;
};void TestPmrVec(){char buffer[1000000*4] = {0};std::pmr::monotonic_buffer_resource pool{std::data(buffer), std::size(buffer)};std::pmr::vector<MyClass> vec{&pool};PerfSum t;for(int i=0;i<1000000;i++){vec.push_back(MyClass{i});}std::cout<<"End"<<std::endl;}void TestStdVec(){std::vector<MyClass> vec ;PerfSum t;for(int i=0;i<1000000;i++){vec.push_back(MyClass{i});}std::cout<<"End"<<std::endl;}int main() {std::cout<<"is_move_constructible<MyClass>: "<<std::is_move_constructible_v<MyClass><<std::endl;std::cout<<"is_nothrow_constructible<MyClass>: "<<std::is_nothrow_constructible_v<MyClass,MyClass&&><<std::endl;std::cout<<"is_nothrow_destructible<MyClass>: "<<std::is_nothrow_destructible_v<MyClass><<std::endl;std::cout<<"trivail<MyClass>: "<<std::is_trivial_v<MyClass><<std::endl;std::cout<<"std vector cost:"<<std::endl;TestStdVec();std::cout<<"pmr vector cost:"<<std::endl;TestPmrVec();
}

7. release版本的差距没那么大

我们废了很大的经历才捋明白何时用memmove何时不用,而且debug版本之间的性能差距达3倍之多,确实值得我们调查一番。但令人失望又惊喜的是:release版本的性能差距竟然只有1.1倍左右:

[mzhai@std_polymorphic_pmr]$ g++ compare_speed.cpp -std=c++17 -O
std vector cost:
Endtook 5349 microseconds.
pmr vector cost:
Endtook 6207 microseconds.
[mzhai@std_polymorphic_pmr]$ ./a.out
std vector cost:
Endtook 4822 microseconds.
pmr vector cost:
Endtook 5160 microseconds.

不由得感叹:现在的编译器真厉害!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2776541.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

containerd中文翻译系列(十九)cri插件

cri插件包含的内容比较多&#xff0c;阅读之前请深呼吸三次、三次、三次。 CRI 插件的架构 本小节介绍了 containerd 的 cri 插件的架构。 该插件是 Kubernetes 容器运行时接口&#xff08;CRI&#xff09; 的实现。Containerd与Kubelet在同一个节点上运行。containerd内部的…

2024年10 个好用的AI简历工具盘点推荐

在职场竞争激烈的今天&#xff0c;一份出色的简历就像是你的秘密武器&#xff0c;能帮你在众多候选人中脱颖而出&#xff0c;赢得面试宝座。随着 ChatGPT 引领的 AI 浪潮席卷而来&#xff0c;各式各样的 AI 简历工具如雨后春笋般涌现。面对这样的背景&#xff0c;神器集今天为大…

【GAMES101】Lecture 19 透镜

目录 理想的薄透镜 模糊 利用透镜模型做光线追踪 景深&#xff08;Depth of Field&#xff09; 理想的薄透镜 在实际的相机中都是用的一组透镜来作为这个镜头 这个因为真实的棱镜无法将光线真正聚焦到一个点上&#xff0c;它只能聚在一堆上 所以方便研究提出了一种理想化的…

Lombok 高级说明

优质博文&#xff1a;IT-BLOG-CN 一、痛点 【1】代码臃肿&#xff1a;POJO中的getter/setter/equals/hashcode/toString等&#xff1b; 【2】样板式代码&#xff1a;I/O流的关闭操作等&#xff1b; Lombok是一个可以通过注解简化Java代码开发的工具&#xff0c;能够在我们编…

《Python 网络爬虫简易速速上手小册》第2章:网络爬虫准备工作(2024 最新版)

文章目录 2.1 选择合适的爬虫工具和库2.1.1 重点基础知识讲解2.1.2 重点案例&#xff1a;使用 Scrapy 抓取电商网站2.1.3 拓展案例 1&#xff1a;使用 Requests 和 BeautifulSoup 抓取博客文章2.1.4 拓展案例 2&#xff1a;使用 Selenium 抓取动态内容 2.2 设置开发环境2.2.1 重…

Python爬虫requests库详解#3

使用 requests 上一节中&#xff0c;我们了解了 urllib 的基本用法&#xff0c;但是其中确实有不方便的地方&#xff0c;比如处理网页验证和 Cookies 时&#xff0c;需要写 Opener 和 Handler 来处理。为了更加方便地实现这些操作&#xff0c;就有了更为强大的库 requests&…

Go语言每日一练——链表篇(四)

传送门 牛客面试笔试必刷101题 ----------------合并两个排序的链表 题目以及解析 题目 解题代码及解析 package main import _"fmt" import . "nc_tools" /** type ListNode struct{* Val int* Next *ListNode* }*//*** 代码中的类名、方法名、参…

flink反压及解决思路和实操

1. 反压原因 反压其实就是 task 处理不过来&#xff0c;算子的 sub-task 需要处理的数据量 > 能够处理的数据量&#xff0c;比如&#xff1a; 当前某个 sub-task 只能处理 1w qps 的数据&#xff0c;但实际上到来 2w qps 的数据&#xff0c;但是实际只能处理 1w 条&#…

基于OpenCV灰度图像转GCode的斜向扫描实现

基于OpenCV灰度图像转GCode的斜向扫描实现基于OpenCV灰度图像转GCode的斜向扫描实现 引言激光雕刻简介OpenCV简介实现步骤 1.导入必要的库2. 读取灰度图像3. 图像预处理4. 生成GCode5. 保存生成的GCode6. 灰度图像斜向扫描代码示例 总结 系列文章 ⭐深入理解G0和G1指令&…

害怕跟别人进行社交,怎么办?

前几天&#xff0c;跟一位朋友&#xff0c;小聚了一下。 这位朋友&#xff0c;在一家大型 IT 公司里当技术主管。收入不低&#xff0c;烟酒不沾&#xff0c;常常健身&#xff0c;外型不错&#xff0c;为人也踏实可靠。除了有一点技术宅的死板之外&#xff0c;可以说是非常理想的…

【 buuctf--刷新过的图片】

前言&#xff1a;这题主要运用到了新的工具F5-steganography由于 java 环境不合适的原因&#xff0c;我不得不重新配java11.0.18。 具体思路&#xff1a;非常帅气的一张图片。。。用 binwalk&#xff0c;stegsolve&#xff0c;zsteg&#xff0c;exiftool 等工具无果后&#xf…

基于 Java 的小说阅读器小程序,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

如何在 Mac 上恢复永久删除的文件:有效方法

您是否错误地从 Mac 中删除了某个文件&#xff0c;并且确信它已经永远消失了&#xff1f;好吧&#xff0c;你可能错了。即使您认为已永久删除计算机上的数据&#xff0c;仍有可能将其恢复。 在本文中&#xff0c;您将了解如何在 Mac 上恢复永久删除的文件&#xff0c;并了解增…

【机器学习】数据清洗之处理缺失点

&#x1f388;个人主页&#xff1a;甜美的江 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进步…

代码随想录 Leetcode376. 摆动序列

题目&#xff1a; 代码&#xff08;首刷看解析 2024年2月9日&#xff09;&#xff1a; class Solution { public:int wiggleMaxLength(vector<int>& nums) {if (nums.size() < 1) return nums.size();int direction 0;//1上升&#xff0c;0下降int res 0;//res…

LeetCode Python - 5.最长回文子串

文章目录 题目答案运行结果 题目 给你一个字符串 s&#xff0c;找到 s 中最长的回文子串。 如果字符串的反序与原始字符串相同&#xff0c;则该字符串称为回文字符串。 示例 1&#xff1a; 输入&#xff1a;s “babad” 输出&#xff1a;“bab” 解释&#xff1a;“aba” 同…

那些 C语言指针 你不知道的小秘密 (4)

本篇会加入个人的所谓‘鱼式疯言’ ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 我会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. &#x1f92d;&#x1f92d;&#x1f92d;可能说的不是那么严谨.但小编初心是能让更多人能…

寒假作业2024.2.8

1.现有文件test.c\test1.c\main.c,请编写Makefile Makefile文件&#xff1a; CCgcc EXEfile OBJS$(patsubst %.c,%.o,$(wildcard *.c)) CFLAGS-c -o all:$(EXE)file:test.o test1.o main.o$(CC) $^ -o $%.o:%.c$(CC) $(CFLAGS) $ $^.PHONY:clean clean:rm $(OBJS)main.c文件:…

【Unity】QFramework通用背包系统优化:TipPanel优化

前言 在学习凉鞋老师的课程《QFramework系统设计&#xff1a;通用背包系统》第五章时&#xff0c;笔者对物品提示TipPanel界面进行了一些优化。 优化内容包括&#xff1a; 解决闪烁问题跟随鼠标移动自适应界面大小生成位置优化 效果还是蛮丝滑的&#xff1a; 解决闪烁问题 …

【详解】斗地主随机发牌项目

目录 前言&#xff1a; 1.初始化牌 2.洗牌 3.揭牌 总代码&#xff1a; Card类&#xff1a; CardGame类&#xff1a; Main类&#xff1a; 结语&#xff1a; 前言&#xff1a; 斗地主是全国范围内的一种桌面游戏&#xff0c;本节我们来实现一下斗地主中的简单初始化牌、…