新书速览|PyTorch 2.0深度学习从零开始学

实战中文情感分类、拼音汉字转化、中文文本分类、拼音汉字翻译、强化学习、语音唤醒、人脸识别

图片

01

本书简介

本书以通俗易懂的方式介绍PyTorch深度学习基础理论,并以项目实战的形式详细介绍PyTorch框架的使用。为读者揭示PyTorch 2.0进行深度学习项目实战的核心技术,实战案例丰富而富有启发。

02

本书内容

本书共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可视化、实战ResNet卷积网络模型、有趣的Word Embedding、基于循环神经网络的中文情感分类实战、自然语言处理的编码器、站在巨人肩膀上的预训练模型BERT、自然语言处理的解码器、基于PyTorch的强化学习实战、基于MFCC的语音唤醒实战、基于PyTorch的人脸识别实战

03

本书读者

 本书适合深度学习初学者、PyTorch初学者、PyTorch深度学习项目开发人员学习,也可作为高等院校或高职高专计算机技术、人工智能、智能科学与技术、数据科学与大数据技术等相关专业的教材

04

 本书作者

王晓华,高校计算机专业讲师,研究方向为云计算、大数据与人工智能。著有《Python机器学习与可视化分析实战》《谷歌JAX深度学习从零开始学》《Spark 3.0大数据分析与挖掘:基于机器学习》《TensorFlow深度学习应用实践》《OpenCV+TensorFlow深度学习与计算机视觉实战》《TensorFlow知识图谱实战》《TensorFlow人脸识别实战》《TensorFlow语音识别实战》《TensorFlow+Keras自然语言处理实战》《TensorFlow 2.0卷积神经网络实战》《Keras实战:基于TensorFlow2.2的深度学习实践》《TensorFlow 2.0深度学习从零开始学》《深度学习的数学原理与实现》。

05

本书目录

第1章  PyTorch 2.0—一个新的开始 1

1.1  燎原之势的人工智能 1

1.1.1  从无到有的人工智能 1

1.1.2  深度学习与人工智能 2

1.1.3  应用深度学习解决实际问题 2

1.1.4  深度学习技术的优势和挑战 3

1.2  为什么选择PyTorch 2.0 4

1.2.1  PyTorch的前世今生 4

1.2.2  更快、更优、更具编译支持—PyTorch 2.0更好的未来 4

1.2.3  PyTorch 2.0学习路径—从零基础到项目实战 5

1.3  本章小结 6

第2章  Hello PyTorch 2.0—深度学习环境搭建 7

2.1  安装Python 7

2.1.1  Miniconda的下载与安装 7

2.1.2  PyCharm的下载与安装 10

2.1.3  Python代码小练习:计算Softmax函数 13

2.2  安装PyTorch 2.0 14

2.2.1  Nvidia 10/20/30/40系列显卡选择的GPU版本 15

2.2.2  PyTorch 2.0 GPU Nvidia运行库的安装—以CUDA 11.7+cuDNN 8.2.0为例 15

2.2.3  PyTorch 2.0小练习:Hello PyTorch 18

2.3  实战:基于PyTorch 2.0的图像去噪 18

2.3.1  MNIST数据集的准备 18

2.3.2  MNIST数据集的特征和标签介绍 20

2.3.3  模型的准备和介绍 21

2.3.4  模型的损失函数与优化函数 24

2.3.5  基于深度学习的模型训练 24

2.4  本章小结 26

第3章  基于PyTorch的MNIST分类实战 27

3.1  实战:基于PyTorch的MNIST手写体分类 27

3.1.1  数据图像的获取与标签的说明 27

3.1.2  模型的准备(多层感知机) 29

3.1.3  损失函数的表示与计算 30

3.1.4  基于PyTorch的手写体识别的实现 31

3.2  PyTorch 2.0模型结构输出与可视化 33

3.2.1  查看模型结构和参数信息 33

3.2.2  基于netron库的PyTorch 2.0模型可视化 34

3.2.3  更多的PyTorch 2.0模型可视化工具 37

3.3  本章小结 38

第4章  深度学习的理论基础 39

4.1  反向传播神经网络的历史 39

4.2  反向传播神经网络两个基础算法详解 43

4.2.1  最小二乘法详解 43

4.2.2  道士下山的故事—梯度下降算法 45

4.2.3  最小二乘法的梯度下降算法以及Python实现 48

4.3  反馈神经网络反向传播算法介绍 54

4.3.1  深度学习基础 54

4.3.2  链式求导法则 55

4.3.3  反馈神经网络的原理与公式推导 56

4.3.4  反馈神经网络原理的激活函数 61

4.3.5  反馈神经网络原理的Python实现 62

4.4  本章小结 66

第5章  基于PyTorch卷积层的MNIST分类实战 67

5.1  卷积运算的基本概念 68

5.1.1  基本卷积运算示例 68

5.1.2  PyTorch 2.0中卷积函数实现详解 70

5.1.3  池化运算 72

5.1.4  Softmax激活函数 73

5.1.5  卷积神经网络的原理 74

5.2  实战:基于卷积的MNIST手写体分类 76

5.2.1  数据准备 77

5.2.2  模型设计 77

5.2.3  基于卷积的MNIST分类模型 78

5.3  PyTorch 2.0的深度可分离膨胀卷积详解 80

5.3.1  深度可分离卷积的定义 81

5.3.2  深度的定义以及不同计算层待训练参数的比较 82

5.3.3  膨胀卷积详解 83

5.4  实战:基于深度可分离膨胀卷积的MNIST手写体识别 84

5.5  本章小结 86

第6章  PyTorch数据处理与模型可视化 87

6.1  用于自定义数据集的torch.utils.data工具箱使用详解 88

6.1.1  使用torch.utils.data.Dataset封装自定义数据集 88

6.1.2  改变数据类型的Dataset类中transform的使用 90

6.1.3  批量输出数据的DataLoader类详解 94

6.2  基于tensorboardX的训练可视化展示 97

6.2.1  tensorboardX的安装与简介 97

6.2.2  tensorboardX可视化组件的使用 97

6.2.3  tensorboardX对模型训练过程的展示 99

6.3  本章小结 102

第7章  从冠军开始—实战ResNet 103

7.1  ResNet基础原理与程序设计基础 103

7.1.1  ResNet诞生的背景 104

7.1.2  不要重复造轮子—PyTorch 2.0中的模块工具 106

7.1.3  ResNet残差模块的实现 107

7.1.4  ResNet网络的实现 109

7.2  实战ResNet:CIFAR-10数据集分类 112

7.2.1  CIFAR-10数据集简介 112

7.2.2  基于ResNet的CIFAR-10数据集分类 115

7.3  本章小结 117

第8章  梅西-阿根廷+巴西=?—有趣的Word Embedding 118

8.1  文本数据处理 119

8.1.1  数据集介绍和数据清洗 119

8.1.2  停用词的使用 121

8.1.3  词向量训练模型Word2Vec使用介绍 124

8.1.4  文本主题的提取:基于TF-IDF 127

8.1.5  文本主题的提取:基于TextRank 131

8.2  更多的Word Embedding方法—FastText和预训练词向量 133

8.2.1  FastText的原理与基础算法 134

8.2.2  FastText训练以及与PyTorch 2.0的协同使用 135

8.2.3  使用其他预训练参数生成PyTorch 2.0词嵌入矩阵(中文) 140

8.3  针对文本的卷积神经网络模型简介—字符卷积 141

8.3.1  字符(非单词)文本的处理 141

8.3.2  卷积神经网络文本分类模型的实现—Conv1d(一维卷积) 149

8.4  针对文本的卷积神经网络模型简介—词卷积 151

8.4.1  单词的文本处理 152

8.4.2  卷积神经网络文本分类模型的实现—Conv2d(二维卷积) 153

8.5  使用卷积实现文本分类的补充内容 156

8.6  本章小结 159

第9章  基于循环神经网络的中文情感分类实战 160

9.1  实战:循环神经网络与情感分类 160

9.1.1  基于循环神经网络的中文情感分类准备 161

9.1.2  基于循环神经网络的中文情感分类实现 163

9.2  循环神经网络理论讲解 165

9.2.1  什么是GRU 166

9.2.2  单向不行,那就双向 167

9.3  本章小结 168

第10章  从0起步—自然语言处理的编码器 169

10.1  编码器的核心—注意力模型 170

10.1.1  输入层—初始词向量层和位置编码器层 170

10.1.2  自注意力层(重点) 172

10.1.3  ticks和LayerNormalization 177

10.1.4  多头自注意力 178

10.2  编码器的实现 181

10.2.1  前馈层的实现 182

10.2.2  编码器的实现 183

10.3  实战编码器:汉字拼音转换模型 186

10.3.1  汉字拼音数据集处理 186

10.3.2  汉字拼音转换模型的确定 188

10.3.3  模型训练部分的编写 191

10.4  本章小结 193

第11章  站在巨人肩膀上的预训练模型BERT 194

11.1  预训练模型BERT 194

11.1.1  BERT的基本架构与应用 195

11.1.2  BERT预训练任务与Fine-Tuning 195

11.2  实战BERT:中文文本分类 198

11.2.1  使用Hugging Face获取BERT预训练模型 198

11.2.2  BERT实战文本分类 200

11.3  更多的预训练模型 204

11.4  本章小结 206

 第12章  从1起步—自然语言处理的解码器 207

12.1  解码器的核心—注意力模型 207

12.1.1  解码器的输入和交互注意力层的掩码 208

12.1.2  为什么通过掩码操作能够减少干扰 213

12.1.3  解码器的输出(移位训练方法) 214

12.1.4  解码器的实现 215

12.2  实战解码器:汉字拼音翻译模型 217

12.2.1  数据集的获取与处理 218

12.2.2  翻译模型 220

12.2.3  汉字拼音模型的训练 230

12.2.4  汉字拼音模型的使用 231

12.3  本章小结 232

第13章  我也可以成为马斯克—无痛的基于PyTorch的强化学习实战 233

13.1  实战:基于强化学习的火箭回收 233

13.1.1  火箭回收技术基本运行环境介绍 234

13.1.2  火箭回收参数介绍 235

13.1.3  基于强化学习的火箭回收实战 236

13.1.4  强化学习的基本内容 241

13.2  强化学习的基本算法—PPO算法 246

13.2.1  PPO算法简介 246

13.2.2  函数使用说明 246

13.2.3  一学就会的TD-Error理论介绍 248

13.2.4  基于TD-Error的结果修正 250

13.2.5  对于奖励的倒序构成的说明 251

13.3  本章小结 252

第14章  创建你自己的小精灵—基于MFCC的语音唤醒实战 253

14.1  语音识别的理论基础—MFCC 253

14.2  语音识别的数据获取与准备 255

14.2.1  Speech Commands简介与数据说明 255

14.2.2  语音识别编码器模块与代码实现 258

14.3  实战:PyTorch 2.0语音识别 260

14.3.1  基于PyTorch 2.0的语音识别模型 260

14.3.2  基于PyTorch 2.0的语音识别实现 261

14.4  本章小结 262

第15章  基于PyTorch的人脸识别实战 263

15.1  人脸识别数据集的建立 263

15.1.1  LFW数据集简介 264

15.1.2  Dlib库简介 264

15.1.3  OpenCV简介 265

15.1.4  使用Dlib检测人脸位置 265

15.1.5  使用Dlib和OpenCV建立自己的人脸检测数据集 268

15.1.6  基于人脸定位制作适配深度学习的人脸识别数据集 270

15.2  实战:基于深度学习的人脸识别模型 274

15.2.1  人脸识别的基本模型Siamese Model 274

15.2.2  基于PyTorch 2.0的Siamese Model的实现 276

15.2.3  人脸识别的Contrastive Loss详解与实现 277

15.2.4  基于PyTorch 2.0的人脸识别模型 278

15.3  本章小结 280

本文摘自《PyTorch 2.0深度学习从零开始学》,获出版社和作者授权发布。

链接PyTorch 2.0深度学习从零开始学——京东

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2776345.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Springboot+vue的社区智慧养老监护管理平台设计与实现(有报告),Javaee项目,springboot vue前后端分离项目

演示视频: Springbootvue的社区智慧养老监护管理平台设计与实现(有报告),Javaee项目,springboot vue前后端分离项目 项目介绍: 本文设计了一个基于Springbootvue的前后端分离的社区智慧养老监护管理平台设…

GPIO输入

GPIO输入 实现的功能:按键控制LED、光敏传感器控制蜂鸣器 按键:常见的输入设备,按下导通,松开断开 按键抖动:由于按键内部使用的是机械弹簧片来进行通断的,所以在按下和松手的瞬间会伴随有一连串的抖动。 …

Linux匿名管道

目录 1.原理 1.直接原理 2.本质原理 2.管道接口 3.管道中的四种情况 1.读写端正常,管道如果为空,读端就要堵塞 2.读写端正常,管道如果被写满,写端就要堵塞 3.读端正常,写端关闭,读端就会读到0&#…

图书系统的Web实现(含源码)

源码地址https://gitee.com/an-indestructible-blade/project 注意事项: BorrowBooksWeb\src\main\resources路径下的application.yml文件里面的url,username,password这三个属性和自己的数据库保持一致。 浏览器访问url:http://127.0.0.1:…

three.js 匀速动画(向量表示速度)

效果&#xff1a; 代码&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"></div>1. 匀速动画(向量表示速度)</div…

网络学习:数据链路层VLAN原理和配置

一、简介&#xff1a; VLAN又称为虚拟局域网&#xff0c;它是用来将使用路由器的网络分割成多个虚拟局域网&#xff0c;起到隔离广播域的作用&#xff0c;一个VLAN通常对应一个IP网段&#xff0c;不同VLAN通常规划到不同IP网段。划分VLAN可以提高网络的通讯质量和安全性。 二、…

Unity类银河恶魔城学习记录5-1.5-2 P62-63 Creating Player Manager and Skill Manager源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili PlayerManager.cs using System.Collections; using System.Collections.G…

【制作100个unity游戏之24】unity制作一个3D动物AI生态系统游戏3(附项目源码)

最终效果 文章目录 最终效果系列目录前言随着地面法线旋转在地形上随机生成动物不同部位颜色不同最终效果源码完结系列目录 前言 欢迎来到【制作100个Unity游戏】系列!本系列将引导您一步步学习如何使用Unity开发各种类型的游戏。在这第24篇中,我们将探索如何用unity制作一…

B2080 计算多项式的值(洛谷)

题目描述 假定多项式的形式为 … x1&#xff0c;请计算给定单精度浮点数 x 和正整数 n 值的情况下这个多项式的值。多项式的值精确到小数点后两位&#xff0c;保证最终结果在 double 范围内。 输入格式 输入仅一行&#xff0c;包括 x 和 n&#xff0c;用单个空格隔开。 输…

前端滚动组件分享

分享一个前端可视化常用的卡片列表滚动组件&#xff0c;常用于可视化项目左右两侧的卡片列表的滚动。效果如下图所示&#xff1a; 组件描述 当鼠标移入滚动区域时&#xff0c;滚动行为停止当鼠标再次离开时&#xff0c;滚动继续 源码展示 <template><div ref"…

【RPA】智能自动化的未来:AI + RPA

伴随着人工智能&#xff08;AI&#xff09;技术的迅猛进步&#xff0c;机器人流程自动化&#xff08;RPA&#xff09;正在经历一场翻天覆地的变革。AI为RPA注入了新的活力&#xff0c;尤其在处理复杂任务和制定决策方面。通过融合自然语言处理&#xff08;NLP&#xff09;、机器…

uni-app x,一个纯原生的Android App开发工具

uni-app x&#xff0c;下一代uni-app&#xff0c;一个神奇的产品。 用vue语法、uni的组件、api&#xff0c;以及uts语言&#xff0c;编译出了kotlin的app。不再使用js引擎和webview。纯纯的kotlin原生app。 uni-app x&#xff0c;让“跨平台开发性能不如原生”的这条曾广为流…

CSP-202109-1-数组推导

CSP-202109-1-数组推导 解题思路 如果 currentValue 与 previousValue 相同&#xff0c;说明这个值不是一个独特的新值&#xff0c;因此只将它加到 sumTotal 上。如果 currentValue 与 previousValue 不相同&#xff0c;说明这是一个新的独特值&#xff0c;因此既将它加到 su…

EMC学习笔记(二十三)降低EMI的PCB设计指南(三)

双层板电源分配 1.单点与多点分布2.星型分布3.创建网格平面4.旁路和磁珠5.将噪声保持在芯片附近 tips&#xff1a;资料主要来自网络&#xff0c;仅供学习使用。 1.单点与多点分布 在一个真正的单点配电系统中&#xff0c;每个有源元件都有自己独立的电源和地&#xff0c;这些…

让AI更“智能”的Agent,究竟是什么?

引言 我相信对许多对AI感兴趣的读者来说&#xff0c;“Agent”是个听起来既熟悉又陌生的词汇&#xff0c;而由于ChatGPT引发的浪潮又将Agent的概念推上顶峰&#xff0c;正好借助这个机会我来好好解释一下这个词汇。 Agent的基本含义 在AI领域&#xff0c;Agent基本可以被理解…

蓝桥杯备赛Day9——链表进阶

给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head = [1,2,3,4,5], n = 2 输出:[1,2,3,5]示例 2: 输入:head = [1], n = 1 输出:[]示例 3: 输入:head = [1,2], n = 1 输出:[1]提示: 链表中结点的数目为 sz1 <= sz <= 300 &l…

心情切换器(仅供娱乐)

本次分享主要内容较为新奇&#xff0c;作用程度可以说没用&#xff0c;仅供娱乐(注&#xff1a;本次成果使用的为vue框架实现) 一、静态及呈现图 <div class"switchMood"><h2>心情转换器</h2><!--输入当前心情表单--><div class"fr…

Project 2010下载安装教程,保姆级教程,附安装包和工具

前言 Project是一款项目管理软件&#xff0c;不仅可以快速、准确地创建项目计划&#xff0c;而且可以帮助项目经理实现项目进度、成本的控制、分析和预测&#xff0c;使项目工期大大缩短&#xff0c;资源得到有效利用&#xff0c;提高经济效益。软件设计目的在于协助专案经理发…

PlantUML绘制UML图教程

UML&#xff08;Unified Modeling Language&#xff09;是一种通用的建模语言&#xff0c;广泛用于软件开发中对系统进行可视化建模。PlantUML是一款强大的工具&#xff0c;通过简单的文本描述&#xff0c;能够生成UML图&#xff0c;包括类图、时序图、用例图等。PlantUML是一款…

k8s 部署java应用 基于ingress+jar包

k8 集群ingress的访问模式 先部署一个namespace 命名空间 vim namespace.yaml kind: Namespace apiVersion: v1 metadata:name: ingress-testlabels:env: ingress-test 在部署deployment deployment是pod层一层封装。可以实现多节点部署 资源分配 回滚部署等方式。 部署的…