三极管从入门到精通

文章目录

  • 摘要
  • 1 基础
    • 1.1 PN结
    • 1.2 三极管
  • 2 三极管模拟电路知识
    • 2.1 I-V特性曲线
    • 2.2 极限参数解释
    • 2.3 基本共射极放大电路
    • 2.4 小信号模型
    • 2.5 用小信号模型分析基本共射极放大电路
  • 3 三极管实际模拟电路应用图
    • 3.1 共射极放大电路
      • 3.1.1 基本共射极放大电路
      • 3.1.2 基极分压式射极偏置电路
    • 3.2 共集电极放大电路(射极输出器)
    • 3.3 共基极放大电路
    • 3.4 各类型电路总结
    • 3.5 多级放大电路
      • 3.5.1 共射-共基放大电路:
      • 3.5.2 共集-共集放大电路
      • 3.5.3 共源-共基放大电路
  • 4 最后

摘要

从PN结开始,介绍了三极管电路符号、物理结构和工作原理,介绍了PNP和NPN三极管的区别及在做电子开关时的用法。针对模拟电路的需要,介绍了三极管的I-V特性曲线,以2N5551三极管为例,讲解了数据手册中各参数意义。更进一步的,讲解了三极管的静态工作点、共射、共集、共基放大电路的特点,并在proteus上进行了仿真,介绍了三极管的H参数和各放大电路的小信号模型。最后简要介绍了三极管多级放大电路。

2022年5月12日

1 基础

1.1 PN结

首先,半导体器件的基础是PN结,在硅里面掺杂三价元素和五价元素,使其带有空穴,载流子是正电荷,叫做P区。另一边带电子,载流子是负电荷,叫做N区。
如下图:
在这里插入图片描述
在P区和N区之间相邻的地方,因为相互吸引,P区一部分的正电荷跑到N区,中和N区的电子,导致P区剩下了不能移动的负离子。
N区一部分负电荷扩散到P区,中和P区的正电荷,导致N区剩下了不能移动的正离子。这一部分之间载流子都被中和掉了,电阻率很高,叫做耗尽区,或者PN结。
当对PN结外加电压时,当P区电压高于N区,形成的电场方向由P到N,则P区正电荷向N区移动,N区负电荷向P区移动,使得原本失去载流子的耗尽区载流子得到补充,PN结变窄,阻止很小,PN结处于导通状态。
如下:
在这里插入图片描述
当P区电压低于N区电压,电场由N指向P,PN结内部,P区正电荷向P外侧移动,N区负电荷向N区外侧移动,最终使得中间PN结变宽,阻值很大,PN结处于不导电状态。
如下图:
在这里插入图片描述

1.2 三极管

我们常说的三极管,是双极结型三极管(Bipolar Junction Transistor,BJT),场效应三极管(FET)也是三极管,常见的是金属-氧化物-半导体三极管(MOSFET)。
NPN三极管和PNP三极管本质区别就是基极N区还是P区的区别。
三极管电路符号如下
在这里插入图片描述
在这里插入图片描述
分辨NPN还是PNP的技巧:
看三极管中箭头指向,箭头代表着电流方向.
我们都知道PN结电流是P流向N,说明PN结中导通时电压是P高于N,电流由P流向N。如果箭头指向基极,说明电流流向基极,则基极是N,两边是P,三极管就是PNP三极管。相反,如果箭头由基极指向发射极,基极电流是留出的,则基极是P,两边是N,三极管就是NPN三极管。

物理结构如下:
在这里插入图片描述
其中的P和N即上述PN结中的P区和N区。当C接地时,B做控制引脚,NPN型三极管控制脚为高电平时,三极管导通。PNP三极管控制脚为负电压时,三极管导通。
数字电路里面常用三极管做电子开关,就是这个原理,实际三极管做电子开关电路如下:
在这里插入图片描述
在这里插入图片描述
在proteus里面,可以选用2N5401和2N5551小功率硅三极管作为互补管使用。
BJT有三种连接关系:
在这里插入图片描述
三引脚内部电流关系如下:
在这里插入图片描述
从每个引脚流过的电流分别为IC、IE、IB,且IE=IB+IC。
BJT是电流控制元件,有电流放大作用。
共射极连接时,有
IC=β * IB,其中β为共射极直流电流放大系数。
共基极连接时,有
IC=α * IE,其中α为共基极直流电流放大系数。
α和β关系为:β=α/(1-α)

2 三极管模拟电路知识

2.1 I-V特性曲线

共射极连接时,如下图
在这里插入图片描述
三极管I-V特性曲线包括输入特性曲线和输出特性曲线。
输入特性曲线为:
在这里插入图片描述
对于输入端B,有以下特点:
1.当输入端B的电压小于一定阈值时,输入电流为0。当B端电压高过阈值时,随着B端电压升高,输入电流迅速增加。
2.当输入电压固定且大于阈值时,随着输出端C电压升高,输入电流稍微降低。

输出特性曲线为:
在这里插入图片描述
对于输出端,有以下特点:
1.当输入电流IB小于阈值时,即使输出端C电压再大,C端流进三极管的电流也几乎为0,即三极管处于关闭状态,叫做截止区。
2.当输入电流IB大于阈值且一定时,当输出端C电压小于一定阈值时,随C端电压升高,C端电流迅速增加。当C端电压到一定值之后,随着C端电压增加,C端电流基本不再变化,将输出端C电压小于一定阈值、不同电流IB组成的区叫做饱和区,将C端电压增大但电流基本不变的区域叫做放大区。
3.饱和区时,可以任务C端有多少电流都可以完全流进三极管里面,限制电流的是C端电压。放大区时,无论C端电压多高,C端电流都是被IB电流控制。

共基极连接时,
在这里插入图片描述
I-V特性曲线如下:
在这里插入图片描述
此时B端电压为参考电压,输入端E电压低于B,输出端C电压高于B。
对于输入端E,有以下特点:
1.当E端电压低于B的值小于0.4V时,输入端电流IE为0。当E低于B的差值高过0.4V时,随差值的增大,IE增大。
2.当E端电压一定且小于B端电压的差值大于0.4V时,随C端电压增大,IE稍微增大。

对于输出端,有以下特点:
1.当输入电流IE=0时,即使C端电压再高,C端电流也为0.
2.当C端电压为负且超过一定阈值时,即使输入端电流再大,输出端电流也上升不大,称为截止区。
3.当VCB大于阈值时,输出端电流随输入端电流成比例增大,称为放大区。

当三极管工作在不同的状态时,其各PN结的状态如下:
在这里插入图片描述

2.2 极限参数解释

如图,在BJT数据手册上有如下极限参数:
在这里插入图片描述
解释如下
IC:集电极最大允许电流,当IC过大时,β值将下降。当工作电流大于该值时,BJT不一定会烧坏,但放大能力很小。
PC:集电极最大允许耗散功率,PC=IC*VCE,BJT上允许功率较大的地方主要是集电极上,该参数为集电极允许的最大功率,当工作条件高于该功率时,BJT将升温烧坏。
各反向击穿电压:
VEBO:当集电极C开路时,发射极-基极间反向击穿PN结时电压,小功率BJT一般为几伏。
VCBO:当发射极E开路时,集电极-基极间反向击穿PN结的电压,通常为几十伏。
VCEO:当基极B开路时,集电极-发射极间的反向击穿PN结的电压,通常为几十伏。

BJT正常工作条件主要要求:
1.C极功率小于PC
2.VCE小于小于VCEO
3.基极-发射极反向电压小于VEBO

2.3 基本共射极放大电路

在这里插入图片描述
如上图所示,大写代表直流,小写代表交流信号。vs是输入小信号,vce是输出信号。
当VS=0时,三极管工作在直流静态状态Q,此时的电流记为IBQ、ICQ,电压记为VBEQ、VCEQ,该状态对应着输入特性曲线和输出特性曲线上一个固定的点,称为三极管的静态工作点。
求静态工作点:
在这里插入图片描述
当VS变化时,比如其是正弦交流信号,按以下原则分析电路中的通路:
1.对于一定频率内的交流信号,容量较大的电容视为短路。
2.对于交流信号,内阻很小能提供很大电流的电压源视为短路,内阻很大的电流源视为开路。

则基本共射极放大电路的交流通路如下:
在这里插入图片描述
当输入信号vs变化时,三极管电流ib会变化,导致ic、vce变化,三极管在特性曲线上的点相对于静态工作点Q发生移动。
因此对于放大电路,需要选取合适的静态工作点Q,使得在vs作用下,三极管相对于Q移动后的工作范围区始终处于放大区。

上面是解析法求静态工作点,还可以使用图解法求静态工作点。
在这里插入图片描述
在输入回路上,有方程:VBE=VBB-IB * RB,将其画在输入特性曲线上,与曲线的交点即为静态工作点。
在输出回路上,有方程:VCE=VCC-IC * RC,将其花在输出特性曲线上,与曲线IB=IBQ的交点即为静态工作点。

当加上交流输入信号vs后,交流动态工作点如下图:
在这里插入图片描述
在这里插入图片描述
由图可见,共射极放大电路输出相位相反。
如果静态工作点选择不当,使Q’落入了饱和区造成的失真叫作饱和失真,使Q’'落入截止区造成的失真叫作截止失真。

2.4 小信号模型

BJT是一个非线性器件,高频特性和低频特性存在很大差异。
当输入信号为低频信号时,可以把BJT静态工作点小范围附近的I-V特性曲线当作直线,就可以用线性化的小信号模型来代替BJT进行电路分析。
对于电路网络,一般只关心输入端口和输出端口,即二端口网络,模型如下:
在这里插入图片描述
可以通过vi、vo、i1、i2来研究该网络特性。
在这四个变量中,选两个为自变量,如果存在函数关系,使得另外两个变量可以由自变量精准描述,则该网络就被确定了。
将BJT看作一个黑盒,三个引脚组成二端口网络。经过人们研究,最终找到了H参数来描述BJT共射极电路小信号模型,如下:
在这里插入图片描述
图中的菱形符号分别表示受控电流源和受控电压源

则有函数关系:
在这里插入图片描述
hie是交流信号输入电阻,单位为欧姆。
hfe是交流状态下电流放大系数。
hre是交流状态下反向电压传输比,反映了输出电压对BJT输入端电压的反作用程度。
hoe是交流状态下BJT的输出电导率,反应输出电压vce对电流ic的影响程度。

只需要确定一个三极管的H参数,就可以精准描述该三极管交流状态下的特性。但不能用小信号模型求三极管静态工作点。

一般的BJT在共射极连接时,其H参数大小范围大致如下,可以忽略部分参数对小信号模型进行简化:
在这里插入图片描述
使用简化模型,可以使用β估算rbe,
在这里插入图片描述
我们只需要β一个参数即可。式中rbb’是输入三极管B端的电阻。
在实际的BJT数据手册中,我们能找到的参数一般只有hfe,
如下:
在这里插入图片描述

并且我们前面说到,当C极负载电流过大时,其放大系数会降得很低,在数据手册中可以看到下图:
在这里插入图片描述
并且C极电流还会影响BJT传输频率,如下图:
在这里插入图片描述
我们一般信号不高于50MHZ,可以忽略该影响。

2.5 用小信号模型分析基本共射极放大电路

如下题:
在这里插入图片描述
图 小信号模型分析基本共射极放大电路

3 三极管实际模拟电路应用图

3.1 共射极放大电路

3.1.1 基本共射极放大电路

如下图所示电路:
在这里插入图片描述
图中电路设计的静态工作点IBQ=50uA,ICQ=β * 50uA=5mA,VBEQ=0.7V,VCEQ=5V-1K * 5mA=0V,三极管输出特性曲线如下:
在这里插入图片描述
图中红色圆点近似为静态工作点.
可见工作点离饱和区很近,很容易产生饱和失真,根据仿真结果,确实在输入信号正半周发生了失真,为饱和失真。
因此,可以选择增大VCEQ,即降低电阻R8,如下:
在这里插入图片描述
此时VCEQ=5V-100 * 5mA=4.5V,失真情况明显改善,但是放大倍数有所降低,此时输入信号幅值20mV。输出信号幅值0.7V,放大倍数35,比之前小了很多。
此即为基本共射极放大电路的实际应用电路,我们可以通过proteus对相应电路进行仿真,这样方便我们查找电路问题。

3.1.2 基极分压式射极偏置电路

在实际应用中,由于温度升高、电源噪声会带来BJT静态工作点移动的问题,而基本共射极放大电路不能解决。下面的电路可以有效解决该问题。
在这里插入图片描述
选择RB1和RB2,使I1>>IB,I1约等于I2,此时VBQ为定值,与环境温度无关。
偏置电阻的选取要求:使VBQ约为1/3的VCC,I1=(5~10)IBQ,令RB=RB1//RB2,RE * (1+β)=10 * RB。

求静态工作点Q:
VBQ=RB2/(RB1+RB2) * VCC,ICQ=IEQ=(VBQ-0.7V)/RE,IBQ=ICQ/β,VCEQ=VCC-ICQ * (RC+RE)。

在交流信号下,小信号等效模型为:
在这里插入图片描述
由于电阻RE会降低电路的电压增益,因此可以在RE旁边并联大电容,叫作射极旁路电容,
此时电压增益为:AV=-β * R’L/rbe。

仿真电路图如下:
在这里插入图片描述
此时BJT的静态工作点:VBQ=1.6V,IBQ=50uA,ICQ=7.5mA,VCEQ=4V。
此电路电压增益约为5倍,输入电阻600R,输出电阻30R。但若不加旁路电容C5,或C5电容太小,则电压增益会迅速下降。
在这里插入图片描述
通过减小VCEQ和增大输出电阻的代价,可以提高电路增益。如上图,电路增益约为20,VCEQ=3V,输出电阻150R左右。
可见,用单个BJT做的放大电路增益一般有限,几十上百左右。而放大器做放大电路,增益轻轻松松可达上百。但是BJT是基础,掌握BJT放大电路是电子工程师的基本技能。

3.2 共集电极放大电路(射极输出器)

电路如下:
在这里插入图片描述
其小信号模型如下:
在这里插入图片描述
特点是电压增益接近1,同相,无电压放大作用,但有电流放大作用。输入电阻高,输出电阻小。可用作多极放大电路的输入级或输出极,或在各极之间做缓冲极,隔离各极之间的影响。

3.3 共基极放大电路

在这里插入图片描述
该电路图直流通路整体与基极分压式射极偏置电路一样,因此其静态工作点求法一样。
其小信号模型为:
在这里插入图片描述
电压增益为:
在这里插入图片描述
该电路具有同向电压放大作用,输入电阻小(当输入信号来自于电流源时是优点),输出电阻近似等于RC。高频和宽频带特性好。高频时应选用小容值耦合电容。

在这里插入图片描述
此时频率为500HZ,随着频率的提高,其放大倍数会提高。当10KHZ时,如下:
在这里插入图片描述
可见增益已经从4变成了25。

3.4 各类型电路总结

在这里插入图片描述

3.5 多级放大电路

多级放大前一级的输出是后一级的输入,整个电路放大增益等于各级放大增益相乘,输入电阻等于第一级放大电路的输入电阻,输出电阻等于最后一级电路的输出电阻。

3.5.1 共射-共基放大电路:

电路图如下:
在这里插入图片描述
共射-共基放大电路的电压增益与单个共射极放大电路的电压增益相近,但是其高频特性更好,具有较高的频宽。

3.5.2 共集-共集放大电路

在这里插入图片描述
多个BJT按共集-共集方式连接起来,其整个的电压增益更接近于1,电流增益更大,可以看作是一个性能更好的BJT,因此又叫复合管。

3.5.3 共源-共基放大电路

将BJT和MOS连接起来,如下图:
在这里插入图片描述
特点是输入电阻高,高频特性好,频带宽。

4 最后

总结不易,有问题欢迎一起交流学习!
2022年5月12日

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2776088.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

vue3 之 通用组件统一注册全局

components/index.js // 把components中的所组件都进行全局化注册 // 通过插件的方式 import ImageView from ./ImageView/index.vue import Sku from ./XtxSku/index.vue export const componentPlugin {install (app) {// app.component(组件名字,组件配置对象)…

REvil/Sodinokibi勒索病毒通用解密工具

前言 REvil/Sodinokibi勒索病毒相信关注我公众号的朋友,应该都不会陌生了,如果不清楚的可以去翻看之前的文章吧,如果你见过类似下面这样的勒索病毒攻击之后的电脑桌面,如下所示: 或者你见过这样的勒索提示界面&#x…

【跳槽须知】关于企业所签订的竞业协议你知道多少?

年后跳槽须知自己签订的合同中是否存在竞业协议,谨防协议造成经济损失 🐓 什么是竞业协议 竞业协议时用于保护自己的权益,在员工离职时决定是否启动的一种协议,避免一些掌握公司机密的一些重要岗位人才流入竞争对手的公司&#xf…

数字信号处理 试题 复盘解答(八)

数字信号处理 试题 复盘解答(八) ps:仅 用作复盘 和回顾知识点,如果有疑问或者错误请提出。 涉及年份 :19 - 21年 六、 个人感觉缺少条件 七、 使用双线性变换法对一个最小相位模拟滤波器进行数字化得到的数字滤波器一般来说不再…

GEE Colab——如何利用Matplotlib在colab中进行图形制作

在colab中绘制图表 笔记本的一个常见用途是使用图表进行数据可视化。Colaboratory 提供多种图表工具作为 Python 导入,让这一工作变得简单。 Matplotlib Matplotlib 是最常用的图表工具包,详情请查看其文档,并通过示例获得灵感。 线性图 线性图是一种常见的图表类型,用…

MySQL篇----第十六篇

系列文章目录 文章目录 系列文章目录前言一、数据库中的事务是什么?二、SQL 注入漏洞产生的原因?如何防止?三、为表中得字段选择合适得数据类型四、存储时期前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇…

IDEA-将压缩的一行代码恢复到原有格式

背景 有时需要将原来的一行代码恢复到未压缩前的格式,方便查看 示例: 通过IDEA自带的功能: 快捷键: MAC版:option command L 效果:

计算机网络基础 第一章——计算机网络概论 知识点

1.1计算机网络的形成与发展 1.计算机网络的特点 (1)计算机网络技术在现代社会发展中的作用 ●21世纪一个重要特征是:数字化、网络化与信息化,它的基础是支持全社会的、强大的计算机网络。 ●计算机网络是当今计算机学科中发展最为迅速的技…

vue.js基于springboot的实验室设备管理系统10345

(1)设备信息模块:记录设备的基本信息,如设备采购来源信息、设备需求量、当前数量、日期等。 (2) 用户模块:教师职工。实现对用户个人信息、消息管理和实验室设备的查询使用申请等。 (3) 管理员模块:实现对所有设备信息的增删改查&…

飞书上传图片

飞书上传图片 1. 概述1.1 访问凭证2. 上传图片获取image_key1. 概述 飞书开发文档上传图片: https://open.feishu.cn/document/server-docs/im-v1/image/create 上传图片接口,支持上传 JPEG、PNG、WEBP、GIF、TIFF、BMP、ICO格式图片。 在请求头上需要获取token(访问凭证) …

Office2013下载安装教程,保姆级教程,附安装包和工具

前言 Microsoft Office是由Microsoft(微软)公司开发的一套基于 Windows 操作系统的办公软件套装。常用组件有 Word、Excel、PowerPoint、Access、Outlook等。 准备工作 1、Win7 及以上系统 2、提前准备好 Office 2013 安装包 安装步骤 1.鼠标右击【Office2013(64bit)】压缩…

JAVA设计模式之原型模式详解

原型模式 1 原型模式介绍 定义: 原型模式(Prototype Design Pattern)用一个已经创建的实例作为原型,通过复制该原型对象来创建一个和原型对象相同的新对象。 西游记中的孙悟空 拔毛变小猴,孙悟空这种根据自己的形状复制出多个身外化身的技巧,在面向对象软件设计领…

蓝桥杯省赛模板构建——uart

打开CubeMX 串口的发送是跟调试器放一起的,通过PA9和PA10来接收发送 选择异步通讯 波特率配置为9600 打开串口中断,因为单片机接收数据需要用到中断 生成代码 添加底层驱动代码 打开在main.h打开uart定义 uart时钟配置,由于uart是用PCLK时钟…

html5+css3胶囊按钮代码

效果 代码 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <title></title> <style> /* 胶囊开关的样式 */ .switch { position: relative; display: inline-block; width: 6…

【c++入门】母牛生小牛

说明 有一头小母牛&#xff0c;从出生第四年起每年生一头小母牛&#xff0c;按此规律&#xff0c;第N年时有几头母牛&#xff1f; 输入数据 只有一个整数N&#xff0c;独占一行。(1≤N≤50) 输出数据 对每组数据&#xff0c;输出一个整数&#xff08;独占一行&#xff09;…

【SpringBootStarter】自定义全局加解密组件

【SpringBootStarter】 目的 了解SpringBoot Starter相关概念以及开发流程实现自定义SpringBoot Starter(全局加解密)了解测试流程优化 最终引用的效果&#xff1a; <dependency><groupId>com.xbhog</groupId><artifactId>globalValidation-spring…

猫头虎分享已解决Bug || 缓存溢出解决方案:CacheOverflowException 或 CacheOutOfMemoryError

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

6、5 门关于 AI 和 ChatGPT 的免费课程,带您从 0-100

5 门关于 AI 和 ChatGPT 的免费课程,带您从 0-100 想在 2024 年免费了解有关 AI 和 ChatGPT 的更多信息吗? 图片由 DALLE 3 提供 活着是多么美好的时光啊。还有什么比现在更适合了解生成式人工智能(尤其是 ChatGPT)等人工智能元素的呢!许多人对这个行业感兴趣,但有些…

函数及函数的定义

前言&#xff1a; 在之前介绍指针的时候&#xff0c;小编发现有些地方需要用函数&#xff0c;所以小编决定先带领大家学习函数&#xff0c;然后再学习指针。 函数是从英文function翻译过来的&#xff0c;其实function在英文中的意思就是函数&#xff0c;也是功能的意思&#xf…

Uniapp真机调试:手机端访问电脑端的后端接口解决

Uniapp真机调试&#xff1a;手机端访问电脑端的后端接口解决 1、前置操作 HBuilderX -> 运行 -> 运行到手机或模拟器 -> 运行到Android App基座 少了什么根据提示点击下载即可 使用数据线连接手机和电脑 手机端&#xff1a;打开开发者模式 -> USB调试打开手机端&…