回归预测 | Matlab实现WOA-CNN-LSTM-Attention鲸鱼算法优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)

回归预测 | Matlab实现WOA-CNN-LSTM-Attention鲸鱼算法优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)

目录

    • 回归预测 | Matlab实现WOA-CNN-LSTM-Attention鲸鱼算法优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)
      • 预测效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现WOA-CNN-LSTM-Attention鲸鱼算法优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)(SE注意力机制);
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE多指标评价;
5.鲸鱼优化学习率,隐藏层节点,正则化系数;

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式资源处直接下载:Matlab实现WOA-CNN-LSTM-Attention鲸鱼算法优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)。
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          
tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层fullyConnectedLayer(num_class, "Name", "fc")                                      % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); %% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2775161.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Java_栈_队列

文章目录 一、栈(Stack)1.概念2.栈的使用3.栈的模拟实现1、定义接口2、定义栈3、成员4、构造方法5、判断空间是否满 full6、入栈 push7、出栈 pop8、获取栈顶元素 peek9、获取栈中有效元素个数 size10、检测栈是否为空 empty完整代码 4.练习1、有效括号2…

单片机的省电模式及策略

目录 一、单片机省电的核心策略 二、单片机IO口的几种模式 三、单片机的掉电运行模式 (1) 浅谈cpu运行为什么会需要时钟? (2)STC15系列单片机内部可以配置时钟 (3)分频策略,降低…

车载自动化项目:Python

1. 自动化测试用的什么框架? 第一种:PythonSeleniumuittest框架 首先是拿到需求文档,基于这个需求去进行搭建。 用pytestrequestallure 这些第三方库进行编写自动化脚本。 举个例子一般的话整个的一个自动化的搭建是分为6层嘛&#xff1a…

Java学习笔记2024/2/8

面向对象 //面向对象介绍 //面向: 拿、找 //对象: 能干活的东西 //面向对象编程: 拿东西过来做对应的事情 //01-如何设计对象并使用 //1.类和对象 //2.类的几个不错注意事项 1. 类和对象 1.1 类和对象的理解 客观存在的事物皆为对象 ,所以我们也常常说万物皆对…

redhat grub.cfg配置文件丢失或报错解决

1.实验环境:把grub.cfg删除 [rootexample ~]# rm -rf /boot/grub2/grub.cfg 2.重启服务器 3,发现进入系统失败 输入以下命令 ls: 列出当前设备上的文件和目录。 grub> ls (hd0) (hd0,msdos3) (hd0,msd0s2) (hd0,msdos1) #一般第一个为/boot分区se…

2月8日作业

1、现有文件test.c\test1.c\main.c,编写Makkefile 代码: CCgcc EXEa.out OBJS$(patsubst %.c,%.o,$(wildcard *.c)) CFLAGS-c -oall:$(EXE)$(EXE):$(OBJS)$(CC) $^ -o $%.o:%.c$(CC) $(CFLAGS) $ $^.PHONY:cleanclean:rm $(OBJS) $(EXE)运行结果: 2、…

wyh的迷宫

涉及知识点:求迷宫能否到达终点的,而不是求路径数的,用bfs时可以不用重置状态数组(回溯)。 题目描述 给你一个n*m的迷宫,这个迷宫中有以下几个标识: s代表起点 t代表终点 x代表障碍物 .代…

【C#】创建Json文件并根据dll路径获取

创建Json文件 更改属性 【代码】根据dll路径获取 Assembly assembly Assembly.GetExecutingAssembly(); string assemblyPath assembly.Location; string relativeDllPath System.IO.Path.Combine(System.IO.Path.GetDirectoryName(assemblyPath), "Json\\test.json&q…

Kubernetes基础(十五)-k8s网络通信

1 k8s网络类型 2 Pod网络 2.1 同一pod内不同容器通信 Pod是Kubernetes中最小的可部署单元,它是一个或多个紧密关联的容器的组合,这些容器共享同一个网络命名空间和存储卷,因此Pod中的所有容器都共享相同的网络命名空间和IP地址——PodIP&a…

华为第二批难题五:AI技术提升六面体网格生成自动化问题

有CAE开发商问及OCCT几何内核的网格方面的技术问题。其实,OCCT几何内核的现有网格生成能力比较弱。 HybridOctree_Hex的源代码,还没有仔细去学习。 “HybridOctree_Hex”的开发者说:六面体网格主要是用在数值模拟领域的,比如汽车…

[WUSTCTF2020]朴实无华(特详解)

一开始说header出问题了 就先dirsaerch扫一遍 发现robot.txt 访问一下 去看看&#xff0c;好好好&#xff0c;肯定不是得 他一开始说header有问题&#xff0c;不妨抓包看看&#xff0c;果然有东西 访问看看&#xff0c;乱码修复一下&#xff0c;在之前的博客到过 <img src…

一文带你读懂Python线程

Python线程 进程有很多优点&#xff0c;它提供了多道编程&#xff0c;可以提高计算机CPU的利用率。既然进程这么优秀&#xff0c;为什么还要线程呢&#xff1f;其实&#xff0c;仔细观察就会发现进程还是有很多缺陷的。 主要体现在一下几个方面&#xff1a; 进程只能在一个时…

springboot基础案例(二)

文章目录 前言一.需求分析: 分析这个项目含有哪些功能模块二.库表设计(概要设计): 1.分析系统有哪些表 2.分析表与表关系 3.确定表中字段(显性字段 隐性字段(业务字段))2.1 创建一个库: ems-thymeleaf2.2 创建 2张表三.编码(环境搭建)1.创建一个springboot项目 项目名字: ems-t…

【Flink入门修炼】1-1 为什么要学习 Flink?

流处理和批处理是什么&#xff1f; 什么是 Flink&#xff1f; 为什么要学习 Flink&#xff1f; Flink 有什么特点&#xff0c;能做什么&#xff1f; 本文将为你解答以上问题。 一、批处理和流处理 早些年&#xff0c;大数据处理还主要为批处理&#xff0c;一般按天或小时定时处…

Java毕业设计-基于ssm的仓库管理系统-第76期

获取源码资料&#xff0c;请移步从戎源码网&#xff1a;从戎源码网_专业的计算机毕业设计网站 项目介绍 基于ssm的游泳馆管理系统&#xff1a;前端jsp、jquery、bootstrap&#xff0c;后端 springmvc、spring、mybatis&#xff0c;集成游泳课程报名、游泳卡在线售卖、购物车、…

可解释性AI(XAI):开启AI决策过程透明化,重塑信任与解决伦理偏见

文章目录 每日一句正能量前言可解释性AI的定义与重要性什么是可解释性&#xff1f;促进技术应用的可信度提高技术的透明度保护隐私和数据权益促进AI的社会接受度 可解释性AI的挑战与难点可解释性AI的应用场景后记 每日一句正能量 宁可因高目标而脖子硬&#xff0c;也不要为低目…

java并发执行批量插入

java并发执行批量插入 1、mybatis-plus批量插入 long start System.currentTimeMillis();int num 5000; //一次批量插入的数量int j 0;for (int i 0;i<20;i){List<User> userList new ArrayList<>();while (true){j;User user new User();user.setUserP…

从REPR设计模式看 .NET的新生代类库FastEndpoints的威力

📢欢迎点赞 :👍 收藏 ⭐留言 📝 如有错误敬请指正,赐人玫瑰,手留余香!📢本文作者:由webmote 原创📢作者格言:新的征程,我们面对的不仅仅是技术还有人心,人心不可测,海水不可量,唯有技术,才是深沉黑夜中的一座闪烁的灯塔 !序言 又到了一年年末,春节将至…

Maven私服部署与JAR文件本地安装

Nexus3 是一个仓库管理器&#xff0c;它极大地简化了本地内部仓库的维护和外部仓库的访问。 平常我们在获取 maven 仓库资源的时候&#xff0c;都是从 maven 的官方&#xff08;或者国内的镜像&#xff09;获取。团队的多人员同样的依赖都要从远程获取一遍&#xff0c;从网络方…

【PTA浙大版《C语言程序设计(第4版)》|编程题】习题7-3 判断上三角矩阵(附测试点)

目录 输入格式&#xff1a; 输出格式&#xff1a; 输入样例&#xff1a; 输出样例&#xff1a; 代码呈现 测试点 上三角矩阵指主对角线以下的元素都为0的矩阵&#xff1b;主对角线为从矩阵的左上角至右下角的连线。 本题要求编写程序&#xff0c;判断一个给定的方阵是否…