创新指南|生成式AI实验 - 企业快速渐进采用人工智能的科学新方法

生成式人工智能(Gen AI)正迅速成为各行各业的企业创新焦点。 生成式AI实验对于企业创新而言至关重要,不仅可以帮助企业识别最适合和最有影响的应用场景,还能促进组织沿着生成式 AI 学习曲线前进,建立早期的创新领导者和AI人才梯队,为未来的AI创新发展奠定基础。企业应谨慎选择AI实验起点,有意识地管理生成式 AI 的风险,并实施负责任的 AI 实践。

2023年火热的AI炒作,让众多企业进入2024都面临着同一个公司策略问题:我的企业该如何开始运用生成式 AI?

生成式 AI(Gen AI),专注于利用已有知识创造新内容的人工智能技术。Gen AI 拥有改变众多行业和功能的巨大潜力,并在过去几个月里迅速普及。

首先要明确的是,这是一个快速变化的创新领域,企业在采纳时必须小心谨慎。这项颠覆式技术也存在不少风险,包括误导信息、归属缺失、偏见和有害内容等。我们已经看到了许多不准确的声明,这通常称为“错觉”。在将这项技术推向终端用户和客户之前,必须进行人工监督以防范这些风险。本文不打算深入探讨技术风险,而是建议各公司负责任地试验这项技术,比如采用“负责任的AI”等方法。

本创新指南将介绍企业探索实验生成式AI的重要性,快速AI实验的益处,如何挑选最合适的应用场景,以及成功实验所需的能力和技术设施

1. 为什么要生成式AI实验

让我们回溯一下历史。2000 年代初,互联网的出现带来了空前的颠覆。我们见证了电商的兴起,亚马逊(Amazon)、易趣(Ebay)和阿里巴巴(Alibaba)等公司迅速崛起。媒体行业也经历了巨大的变革:报纸和杂志转向线上,Netflix 和 YouTube 这样的新兴流媒体服务让观众能够随时观看内容。Expedia 和 Booking.com 等公司让旅行者更容易比价和预订航班、酒店和租车服务,绕过了传统旅行社。互联网为企业提供了新的客户接触渠道,从而颠覆了广告行业。总的来说,互联网在 2000 年代初影响了众多行业,迫使公司不得不适应新变化或面临被淘汰的风险。

类似地,像 ChatGPT 这样的生成式 AI 创新不容小觑。如果您管理的是一个企业组织,这同样适用于您的客户和员工(他们可能已经在使用这项技术)。生成式 AI 有可能影响诸多行业,从分子生成到客户服务,从产品设计到内容开发,涵盖艺术、设计、营销和娱乐等领域。通过利用现有数据创造新内容,生成式 AI 能够帮助企业节约时间和资源,同时仍能产出高质量和可信度高的成果

那些能够在与客户接触时提供智能服务的公司将获得先发优势。看看Microsoft. Adobe和雀巢就是典型的领先案例。

Jackie Pan

生成式AI新兴应用的价值在以下7个大领域得到显现

(1) 市场营销:我们正见证生成式 AI 营销应用的快速涌现,从生成型产品设计到内容个性化。还包括自动化用户界面设计,这加速了广告活动和产品登陆页面的创建。实际上,有些创新能基于单一提示立即生成数百个活动构思,实现实验和个性化的爆炸式增长。这些创新为缩短营销周期和提高更有针对性的活动交付创造了机会。

(2) 技能培训:虽然像 ChatGPT 这样的工具可能还未完全适合最终用户使用,但它们已能用来创建现有知识库的初稿或概要。正如前所述,这些生成式 AI 的输出需要人工审查以产生最终内容。除了文本创作,还有如 ElevenLabs 和 Synthesia.io 这样的新兴生成式 AI 技术能生成语音和视频。文本、语音和视频的结合将加速培训开发流程,有助于员工入职、产品培训和其他许多应用场景。

企业AI实验

(3) 代码生成:OpenAI 的重大创新之一,Codex,可以理解自然语言并自动编写代码。它被用于支持 Github 的 Copilot,这是一种能根据文字提示编写代码的工具。Copilot 可以作为插件添加到常用编程工具,例如 Visual Studio Code。根据 Github 的数据,代码自动生成能大幅提升工程师的工作效率,提升幅度高达 88%。它还能减少错误,帮助开发者更多地专注于测试和功能提升等增值活动。

(4) 企业搜索:多年来公司积累了大量内部知识,通常储存在内部门户和搜索引擎中。过去,获取这些知识需要依靠预设的索引导航。生成式 AI 则有可能通过文本提示来简化知识搜索。企业搜索使公司能够迅速获取其全部数据资料,从而更广泛、更快速地分享知识。采纳生成式 AI 的先行者正在整合他们的内部知识库,并将其应用于生成式 AI 模型中。这使得员工在寻找知识时能够提出更相关的问题,有助于他们更有效地工作和学习。

(5) 客户服务:现今客户期待获得个性化体验,并对其交易的公司提出更高要求。生成式 AI 可以通过生成个性化推荐和动态内容来满足这些期待,并提供快捷方便的客户支持。在过去十年中,客户变得更懂得数字技术和数据。因此,他们追求个性化和快速响应,在他们选择的时间,通过他们偏好的渠道(聊天、移动、网站、面对面)获得服务。能够在与客户接触时提供及时智能服务的公司将走在行业前沿。

(6) 经营分析:生成式 AI 能帮助公司通过数据驱动的方式获得传统方法无法达到的洞察。目前,生成式 AI 模型在提供精确结果和处理数字或逻辑问题方面还存在困难。然而,新兴的性能结果显示,生成式 AI 模型在训练成本和实施工作量方面已经开始超越传统的 AI 分类模型,如图像分类。鉴于生成式 AI 领域的快速发展,我预计这些准确性的不足将在未来几个月得到解决。

(7) 流程自动化:生成式 AI 能够帮助公司通过自动化重复性工作和简化流程来节约时间和资源。这不仅可以降低成本,提高效率,还能为更多战略性的项目释放资源。早期的实验结果显示,在文本内容生成相关任务中,可以达到 50% 到 90% 的效率提升,准确率在 85% 到 90% 之间。

2. 如何构建生成式AI实验场景

快速实验对于推动生成式 AI 的广泛应用至关重要。通过迅速测试和迭代各种模型和应用场景,组织可以快速识别哪些方法有效、哪些不行,从而更好地决定哪些策略最有效,哪些准备好大规模推广。

企业需要全面考虑他们当前和未来的模型,识别全面机会模式下的应用场景。首先,他们需要了解生成式AI如何影响客户体验。其次,公司需要考虑生成式AI如何创新产品和服务。第三,公司需评估生成式 AI如何提高运营效率。最后,公司需构建能力,扩大生成式AI的应用。

(1) 客户体验:专注于改善全程客户体验的用例。包括个性化的产品或服务推荐、聊天机器人和虚拟助手、动态内容生成(如网站文案、营销材料)以及自动化客户服务。例如:

  • 利用生成式 AI 的力量,公司能够提升客户参与度,提高客户满意度,并推动业务增长。
  • 数字营销和聊天机器人的能力可以通过生成式 AI 的自然语言处理(NLP)能力得到提升。

(2) 产品和服务:专注于通过自动化重复性和耗时任务来加速产品创新的用例(如自动生成产品描述、提出产品特性)。例如:

  • 在医疗保健研发中,生成式 AI 用于提出新疗法和生成分子组合。
  • 生成式 AI 将用于创造更个性化的产品特性(如个性化条款、个性化药物等)。

(3) 业务运营:专注于提升效率、减少手动工作和内容生成。例如:

  • 在数字营销领域,生成式 AI 用于快速生成和迭代产品图像和营销文案。
  • 在回应请求提案(RFP)时,组织正在使用生成式 AI 制作初稿。
  • 生成式 AI 能够总结文档(如会议记录、法律文件)。
  • 公司正在尝试使用他们自己的知识库训练大语言模型,这将帮助员工通过自然语言界面访问所有企业知识。

(4) 生成式 AI 能力:在这一领域,公司将专注于建立关键能力,以便解锁更广泛的应用。例如:

  • 负责任的 AI 将使公司能够测试 AI 模型的偏见和不良行为,并加以消除,这将使高层领导和监管者更有信心谨慎、深思熟虑地推进。
  • 数据科学将帮助实施和微调模型,对于持续测试新的大语言模型和构建特殊用途模型至关重要。

实验生成式 AI 将需要对行业的深入了解、数据科学和负责任 AI 的技术专长,以及数字化产品开发经验。

Jackie Pan

3. 如何优选生成式AI的实验场景

在考虑进行生成式 AI 的实验时,关键在于慎重选择最有可能从这项技术中受益的应用场景。这可能需要考虑的因素包括所生成内容的类型、目标受众,以及进行实验的可用资源。 以下是一份初步的标准列表,帮助您优先考虑生成式 AI 的应用场景:

(1) 创造价值:这一标准关注生成式 AI 应用场景在创造价值方面的潜力。那些有可能显著提升收入、降低成本或提高效率的应用场景应该被优先考虑。这种方法有助于快速建立动力,并在早期形成良性循环。

(2) 战略契合:接下来,企业应当选择与其商业战略和优先事项相符合的应用场景。这包括改善客户体验、加速产品上市和降低成本等。例如,如果一家公司致力于提升客户体验,那么能够提供个性化推荐或创新产品描述的生成式 AI 应用场景就会非常合适。

(3) 功能可行性:重点关注在文本、图像、语音、视频等内容生成方面能带来好处的应用场景。目前,文本和图像领域已有多个生成式 AI 应用,并且我预计在未来几个月内其他类型的内容也将迅速发展。

(4) 技术可行性:此标准涵盖数据可用性、内容策划、技术能力、安全性、数据隐私、性能等因素。

(5) 风险与收益:最后,评估实施生成式 AI 应用场景的风险非常重要。其中一个需要考虑的风险是内部知识的保护。组织需要注意,与公共语言模型(如 OpenAI 的 ChatGPT)共享的数据可能会被任何人访问,因此建议实施私有模型或在分享前清洗数据。另一个需要考虑的风险是模型输出可能存在的不准确性、偏见或有害内容。目前,建议将生成式 AI 应用优先于内部用户,而不是最终客户。为了应对这些风险,组织需要建立负责任的 AI 实践,监控风险并就实施提供指导。

4. 生成式AI实验所需的技能

开展生成式AI实验不仅需要对行业有深入的理解,还需要在数据科学、负责任 AI 和产品开发方面具备技术专长。此外,强烈的业务和领域知识也非常重要,以确保AI实验与公司的目标和目标一致。

组建一个全能型的AI创新实验团队,针对每个应用场景,大致需要以下角色:

  • 生成式 AI 产品负责人:负责明确生成式 AI 应用场景的价值,并领导跨学科团队。他们需要深谙生成式 AI,理解其如何创造价值并管理风险(例如偏见、有害内容和不准确性)。
  • 业务分析师:深入了解需解决的具体业务场景(如优化、创新),并理解生成式 AI 解决方案如何融入业务流程。他们在定义需求、策划知识、用户测试和实施方面发挥着关键作用。
  • 生成式 AI UX/UI 设计师:与业务分析师合作,识别每个用户角色的痛点和需求。设计师负责开发、测试并迭代用户界面设计,交付视觉指南、UI 线框图和可点击原型,为工程师构建应用层提供必要支持。
  • 数据科学家:负责实施和测试生成式 AI 模型,微调大语言模型(LLM)设置,建立模型监督措施,并输入训练数据。他们还需告知模型的能力限制,并就准确性和负责任 AI 提出风险警告。
  • 数据工程师:负责构建生成式 AI 的平台基础设施和与大语言模型(LLM)组件的 API 集成,实现数据和内容流程,开发测试自动化用例,以及构建面向最终用户的前端应用程序。
  • DevOps 和 SRE 工程师:为生成式 AI 工程师和数据科学家提供所需的基础设施即代码、大语言模型(LLM)监控和运营,以及数据内容管道的批量调度和模型训练。

除了上述技能,团队还需要掌握与生成式 AI 相关的特殊能力,比如知识策划、模型微调和提示工程。这确保了实验结构合理,结果可靠且可重复。

由于文章篇幅有限,详细内容可点击下文链接:

创新指南|生成式AI实验 - 企业快速渐进采用人工智能的科学新方法

查看 1000+热门创新案例 请进入创新社区

Runwise创新社区是一个连接全球领先创新智库和专家,汇聚10+万专业企业创始人、创业家、创新提供者(咨询师/咨询顾问)创新研究学者参与的创新实践社区。

 延展文章:

创新指南|引领AI时代的企业AI转型 - 以5大务实策略来推进实施

创新研报|中国AIGC广告营销产业全景报告

创新指南|迎接2024重塑增长的挑战 - 不容错过的6大增长策略

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2775038.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Elementplus报错 [ElOnlyChild] no valid child node found

报错描述&#xff1a;ElementPlusError: [ElOnlyChild] no valid child node found 问题复现&#xff08;随机例子&#xff09;&#xff1a; <el-popover placement"right" :width"400" trigger"click"><template #reference><e…

零基础学Python之Unitest模块

1.unittest简介及入门案例 &#xff08;1&#xff09;什么是Unitest Unittest是Python自带的单元测试框架&#xff0c;不仅适用于单元测试&#xff0c;还可用于Web、Appium、接口自动化测试用例的开发与执行。该测试框架可组织执行测试用例&#xff0c;并且提供丰富的断言方法…

Unity引擎学习笔记之【动画层操作】

动画层Animation Layer 一、动画器的三个基本状态 1. Any State&#xff08;任意状态&#xff09; “Any State”&#xff08;任意状态&#xff09;&#xff1a;这个状态可以用来连接多个状态机的任意状态转换。在动画控制器中&#xff0c;你可以使用“Any State”作为过渡条…

问题:银行账号建立以后,一般需要维护哪些设置,不包括() #学习方法#经验分享

问题&#xff1a;银行账号建立以后&#xff0c;一般需要维护哪些设置&#xff0c;不包括&#xff08;&#xff09; A&#xff0e;维护结算科目对照 B&#xff0e;期初余额初始化刷 C&#xff0e;自定义转账定义 D&#xff0e;对账单初始化 参考答案如图所示

c入门第十篇——指针入门

一句话来说: 指针就是存储了内存地址值的变量。 在前面讨论传值和传址的时候&#xff0c;我们就已经开始使用了指针来传递地址。 在正式介绍指针之前&#xff0c;我们先来简单了解一下内存。内存可以简单的理解为一排连续的房子的街道&#xff0c;每个房子都有自己的地址&#…

94.网游逆向分析与插件开发-游戏窗口化助手-地图数据获取的逆向分析与C++代码还原

内容参考于&#xff1a;易道云信息技术研究院VIP课 上一个内容&#xff1a;升级经验数据获取的逆向分析 码云地址&#xff08;游戏窗口化助手 分支&#xff09;&#xff1a;https://gitee.com/dye_your_fingers/sro_-ex.git 码云版本号&#xff1a;c4351a5b346d8953a1a8e3ec…

还是蓝海项目?浅谈steam海外道具搬运项目几个常见问题!

做steam这个项目做了已经3年多了。记得刚开始做的时候还是一个很冷门的项目&#xff0c;现在越来越多的朋友也开始了解这个项目。 其中不乏很多已经在别的地方了解过后来找我咨询的朋友。我发现一些同行或者说自媒体太过于虚假宣传&#xff0c;把steam这个项目说的太好了。也有…

Java学习15-- 面向对象学习3. 对象的创建分析【★】

&#xff08;本章看不懂多读几遍&#xff0c;弄懂后再往下章看&#xff09; 面向对象学习3. 对象的创建分析 Java Memory Structure: 如上图所示&#xff1a; 主要分为Stack和Heap Memory 其中Stack主要放method包括main 程序从main开始所以main最先进入Stack&#xff0c;等…

【十二】【C++】vector用法的探究

vector类创建对象 /*vector类创建对象*/ #if 1 #define _CRT_SECURE_NO_WARNINGS#include <iostream> using namespace std; #include <vector> #include <algorithm> #include <crtdbg.h>class Date {public:Date(int year 1900, int month 1, int …

Web课程学习笔记--CSS选择器的分类

CSS 选择器的分类 基本规则 通过 CSS 可以向文档中的一组元素类型应用某些规则 利用 CSS&#xff0c;可以创建易于修改和编辑的规则&#xff0c;且能很容易地将其应用到定义的所有文本元素 规则结构 每个规则都有两个基本部分&#xff1a;选择器和声明块&#xff1b;声明块由一…

【C++】引用与内联

个人主页 &#xff1a; zxctsclrjjjcph 文章封面来自&#xff1a;艺术家–贤海林 如有转载请先通知 文章目录 1. 前言2. 引用2.1 引用概念2.2 引用使用场景2.3 引用特性2.4 引用和指针的区别2.5 传值、传引用效率比较2.5.1 值和引用的作为返回值类型的性能比较 3. 内联函数3.1 …

Guava RateLimiter单机实战指南

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 Guava RateLimiter单机实战指南 前言maven坐标引入业务实现重要参数和方法关于warmupPeriod实战 前言 想象一下你是一位大厨&#xff0c;正在烹饪美味佳肴。突然之间&#xff0c;前来就餐的人潮如潮水…

#Js篇:js里面递归的理解

定义&#xff1a; 递归是一种编程技术&#xff0c;它是指一个函数在其定义内部调用自身的过程。 特点&#xff1a; 一个问题可以分解为更小的问题用同样的方法解决&#xff1b;分解后的子问题求解方式一样&#xff0c;不同的是数据规模变小&#xff1b;存在递归终止条件 作…

单片机学习笔记---DS1302实时时钟工作原理

目录 DS1302介绍 学会读芯片手册&#xff08;DS1302芯片手册&#xff09; 封装 引脚定义 电源部分 时钟部分 通信部分 总结列表 内部结构图 电源控制部分 时钟控制部分 寄存器部分 访问部分 寄存器部分的详细定义 命令字 时序的定义 单字节读 单字节写 提前预…

Vulnhub-Empire靶机-详细打靶流程

渗透思路 1.确认靶机IP地址2.端口服务扫描3.敏感目录扫描4.ffuf命令在这个目录下&#xff0c;继续使用ffuf工具扫描 5.ssh私钥爆破1.将私钥写进sh.txt中2.将私钥转换为可以被john爆破的形式3.通过John爆破 6.ssh私钥登陆7.icex64提权8.arsene提权 1.确认靶机IP地址 ┌──(roo…

机器学习 | 深入集成学习的精髓及实战技巧挑战

目录 xgboost算法简介 泰坦尼克号乘客生存预测(实操) lightGBM算法简介 《绝地求生》玩家排名预测(实操) xgboost算法简介 XGBoost全名叫极端梯度提升树&#xff0c;XGBoost是集成学习方法的王牌&#xff0c;在Kaggle数据挖掘比赛中&#xff0c;大部分获胜者用了XGBoost。…

2 月 7 日算法练习- 数据结构-并查集

并查集 并查集是一种图形数据结构&#xff0c;用于存储图中结点的连通关系。 每个结点有一个父亲&#xff0c;可以理解为“一只伸出去的手”&#xff0c;会指向另外一个点&#xff0c;初始时指向自己。 一个点的根节点是该点的父亲的父亲的的父亲&#xff0c;直到某个点的父亲…

Python:流程控制

4.1 顺序结构 在任何编程语言中最常见的程序结构就是顺序结构。顺序结构就是程序从上到下一行行地执行&#xff0c;中间没有任何判断和跳转。 如果Python程序的多行代码之间没有任何流程控制&#xff0c;则程序总是从上往下依次执行&#xff0c;排在前面的代码先执行&#xf…

vue3-内置组件-KeepAlive

KeepAlive <KeepAlive> 是一个内置组件&#xff0c;它的功能是在多个组件间动态切换时缓存被移除的组件实例。 基本使用 默认情况下&#xff0c;一个组件实例在被替换掉后会被销毁。这会导致它丢失其中所有已变化的状态——当这个组件再一次被显示时&#xff0c;会创建…

大数据 - Spark系列《五》- Spark常用算子

Spark系列文章&#xff1a; 大数据 - Spark系列《一》- 从Hadoop到Spark&#xff1a;大数据计算引擎的演进-CSDN博客 大数据 - Spark系列《二》- 关于Spark在Idea中的一些常用配置-CSDN博客 大数据 - Spark系列《三》- 加载各种数据源创建RDD-CSDN博客 大数据 - Spark系列《…