PyTorch深度学习实战(23)——从零开始实现SSD目标检测

PyTorch深度学习实战(23)——从零开始实现SSD目标检测

    • 0. 前言
    • 1. SSD 目标检测模型
      • 1.1 SSD 网络架构
      • 1.2 利用不同网络层执行边界框和类别预测
      • 1.3 不同网络层中默认框的尺寸和宽高比
      • 1.4 数据准备
      • 1.5 模型训练
    • 2. 实现 SSD 目标检测
      • 2.1 SSD300 架构
      • 2.2 MultiBoxLoss
      • 2. 训练 SSD
    • 小结
    • 系列链接

0. 前言

SSD (Single Shot MultiBox Detector) 是一种基于单次前向传递的实时目标检测算法,它在速度和准确性之间取得了很好的平衡。与传统的两阶段目标检测算法(如 Faster R-CNN )不同,SSD 直接在图像的多个尺度上进行预测,无需候选框生成和筛选。SSD 的核心思想是在卷积神经网络的不同层级上设置多个特征图用于预测目标。这些特征图在空间上具有不同的尺度,可以检测不同大小的目标。每个特征图上的每个位置都预测一组边界框和对应的类别概率。在本节中,将介绍 SSD 的工作原理,然后在自定义数据集上训练 SSD 目标检测模型。

1. SSD 目标检测模型

在 R-CNN 和 YOLO 目标检测模型中,通过数次应用卷积和池化预测目标对象类别和边界框。同时,我们也知道不同的网络层对原始图像具有不同的感受野,初始层相对于最终层具有较小的感受野。在本节中,我们将学习 SSD 如何利用这一现象来预测图像中目标对象的边界框。
SSD (Single Shot Multibox Detector) 使用了多层感受野的特性来解决多尺度目标检测问题,检测图像中不同尺度的目标对象,具体来说:

  • 使用额外的网络层扩展预训练的 VGG 网络,直到获得 1 x 1 的输出
  • 与仅使用最终层进行边界框和类别预测不同,SSD 利用这些添加的卷积层和池化层检测大小不同的物体
  • SSD 使用特定比例和纵横比的默认框来代替锚框,并将这些框与不同特征图中的不同尺寸的目标相对应
  • YOLO 使用锚框预测类别和偏移量一样,SSD 通过对每个默认框进行类别和偏移量预测来输出目标检测结果

总体而言,SSDYOLO 的主要区别包括:SSD 中使用默认框 (default box) 替换了 YOLO 中的锚框 (anchor box),并且 SSD 中使用多层特征图执行预测,而 YOLO 中使用最终特征层。

1.1 SSD 网络架构

SSD 的网络架构如下:

SSD 架构
如上图中所示,将一张尺寸为 300 x 300 x 3 的图像输入到预训练的 VGG-16 网络获得 conv5_3 层的输出,然后,通过在 conv5_3 后追加更多卷积层来扩展网络。

1.2 利用不同网络层执行边界框和类别预测

接下来,针对每个单元格和每个默认框获取边界框偏移量和类别预测。conv5_3 输出的预测总数为 38 x 38 x 4,其中 38 x 38conv5_3 层的输出形状,4 是在 conv5_3 层上的默认框数量。以此类推,整个网络的参数总数如下:

权重数
conv5_338 x 38 x 4 = 5776
FC619 x 19 x 6 = 2166
conv8_210 x 10 x 6 = 600
conv9_25 x 5 x 6 = 150
conv10_23 x 3 x 4 = 36
conv11_21 x 1 x 4 = 4
总计8732

可以看到,每个网络层中特征图网格单元上使用的默认框数量并不相同。

1.3 不同网络层中默认框的尺寸和宽高比

本节中,我们学习如何确定默认框的尺寸和宽高比,首先计算默认框尺寸。假设目标对象最小尺寸为图像高度的 20%、宽度的 20%,最大尺寸为高度的 90%、宽度的 90%。在这种情况下,随着网络层的逐渐增加,图像大小会显著缩小:

图像尺寸
图像缩放的公式如下:

l e v e l i n d e x : l = 1 , . . . , L s c a l e o f b o x e s : s l = s m i n + s m a x − s m i n L − 1 ( l − 1 ) level\ index:l=1,...,L \\ scale\ of\ boxes:s_l=s_{min}+\frac{s_{max}-s_{min}}{L-1}(l-1) level index:l=1,...,Lscale of boxes:sl=smin+L1smaxsmin(l1)

了解了如何计算默认框在不同网络层的尺寸后,我们继续学习如何确定默认框的宽高比,常用的宽高比如下:

a s p e c t r a t i o : r ∈ 1 , 2 , 3 , 1 / 2 , 1 / 3 aspect\ ratio:r∈{1,2,3,1/2,1/3} aspect ratio:r1,2,3,1/2,1/3

不同网络层的默认框框的中心坐标如下:

c e n t e r l o c a t i o n : ( x l i , y l i ) = ( i + 0.5 m , j + 0.5 n ) center\ location:(x_l^i,y_l^i)=(\frac {i+0.5}{m},\frac{j+0.5}{n}) center location:(xli,yli)=(mi+0.5,nj+0.5)

其中,使用 i i i j j j 表示第 l l l 层中的一个单元。

不同宽高比对应的宽高计算如下:

w i d t h : w l r = s l r h e i g h t : h l r = s l r width:w_l^r=s_l\sqrt r\\ height:h_l^r=s_l\sqrt r width:wlr=slr height:hlr=slr

需要注意的是,我们在不同网络层使用了不同数量的默认框( 4 个或 6 个),如果想要使用 4 个默认框,删除纵横比 {3,1/3},否则使用 6 个默认框,结合不同层及其特征图的比例和长宽比来检测各种尺寸的对象,第 6 个默认框的纵横比计算方式如下:

a d d i t i o n a l s c a l e : s l ′ = s l s l + 1 w h e n r = 1 additional\ scale:s_l'=\sqrt{s_ls_l+1}\ \ \ \ when\ r=1 additional scale:sl=slsl+1     when r=1

获得了所有可能的默认框后,我们继续学习如何准备训练数据集。

1.4 数据准备

交并比 (Intersection over Union, IoU) 大于指定阈值(例如 0.5 ) 的默认框被视为正匹配,其余为负匹配。在 SSD 的输出中,我们预测默认框属于某个类别(其中第 0 个类别表示背景)的概率,以及默认框相对于真实边界框的偏移量。
最后,我们通过优化分类和定位损失值来训练模型。

1.5 模型训练

分类损失:

L c l s = − ∑ i ∈ p o s l i j k l o g ( c ^ i k ) − ∑ i ∈ n e g l o g ( c ^ i 0 ) , w h e r e c ^ i k = s o f t m a x ( c i k ) L_{cls}=-\sum_{i∈pos}l_{ij}^klog(\hat c_i^k)-\sum_{i∈neg}log(\hat c_i^0),\ where\ \hat c_i^k\ =\ softmax(c_i^k) Lcls=iposlijklog(c^ik)ineglog(c^i0), where c^ik = softmax(cik)

其中,pos 表示与真实边界框高度重叠的默认框,而 neg 表示被错误分类的默认框(模型预测这些默认框中包含某个类别但实际上没有包含目标对象)。最后,需要确保 pos : neg 比率最多为 1:3,否则会因为背景类别默认框过多导致预测偏差。

定位损失:对于定位,仅在目标对象得分大于某个阈值时才计算损失值,定位损失计算如下:

L l o c = ∑ i , j ∑ m ∈ { x , y , w , h } 1 i j m a t c h L 1 s m o o t h ( d m i − t m j ) 2 L 1 s m o o t h ( x ) = { 0.5 x 2 i f ∣ x ∣ < 1 ∣ x ∣ − 0.5 o t h e r w i s e t x j = g x i − p x i p w i t y j = g y i − p y i p h i t w j = l o g g w i p w i t h j = l o g g h i p h i L_{loc}=\sum_{i,j}\sum_{m∈\{x,y,w,h\}}1_{ij}^{match}L_1^{smooth}(d_m^i-t_m^j)^2\\ L_1^{smooth}(x)=\left\{ \begin{array}{rcl} 0.5x^2 & & {if\ |x|<1}\\ |x|-0.5 & & {otherwise} \end{array} \right.\\ t_x^j=\frac {g_x^i-p_x^i}{p_w^i}\\ t_y^j=\frac {g_y^i-p_y^i}{p_h^i}\\ t_w^j=log\frac {g_w^i}{p_w^i}\\ t_h^j=log\frac {g_h^i}{p_h^i} Lloc=i,jm{x,y,w,h}1ijmatchL1smooth(dmitmj)2L1smooth(x)={0.5x2x0.5if x<1otherwisetxj=pwigxipxityj=phigyipyitwj=logpwigwithj=logphighi

其中, t t t 是预测的偏移量, d d d 是实际的偏移量。了解了如何训练 SSD 后,在下一节中,我们将使用 PyTorch 从零开始实现 SSD 模型用于公共汽车与卡车目标检测任务。

2. 实现 SSD 目标检测

2.1 SSD300 架构

SSD300 模型架构包含三个子模块:

class SSD300(nn.Module):...def __init__(self, n_classes, device):...self.base = VGGBase()self.aux_convs = AuxiliaryConvolutions()self.pred_convs = PredictionConvolutions(n_classes)...

首先将图片输入到 VGGBase 主干网络,返回两个维度为 (N, 512, 38, 38)(N, 1024, 19, 19) 的特征向量。第二个输出将作为 AuxiliaryConvolutions 的输入,并返回维度为 (N, 512, 10, 10)(N, 256, 5, 5)(N, 256, 3, 3)(N, 256, 1, 1) 的输出特征图。最后,将 VGGBase 的第一个输出和 AuxiliaryConvolutions 的四个输出特征图输入到 PredictionConvolutions,返回 8,732 个默认框。
SSD300 类的另一个关键是 create_prior_boxes 方法。对于每个特征图,都有三个与之相关的参数:网格大小、网格单元的比例(特征图的基本默认框)以及单元格中所有默认框的宽高比。使用这三个配置,代码使用三重 for 循环创建一个包含 8732 个默认框 (cx, cy, w, h) 的列表。
最后,detect_objects 方法将预测的默认框分类和回归结果的张量转换为实际的边界框坐标。

2.2 MultiBoxLoss

对于人类而言,我们只需关注少数几个边界框。但是对于 SSD 而言,需要比较来自多个特征图的 8,732 个边界框,并预测默认框是否包含有价值的信息,使用 MultiBoxLoss 计算模型损失。前向传播方法 forward 的输入是模型的默认框预测和真实边界框。
首先,通过将模型中的每个默认框与边界框进行比较,将真实边界框转换为一个包含 8732 个默认框的列表。如果 IoU 足够高,那么特定的默认框将具有非零的回归坐标,并将对象类别作为分类的真实值。然后,计算分类置信度和定位损失,并返回这些损失的总和作为前向传播的输出。大多数默认框会被归类为背景类别,因为它们与真实边界框的 IoU 非常小(甚至在大多数情况下为零)。
一旦将真实值转换为包含 8,732 个默认框的回归和分类张量,就可以将它们与模型的预测进行比较。对回归张量执行 MSE-Loss,对定位张量执行 CrossEntropy-Loss,并将它们加起来作为最终损失返回。

2. 训练 SSD

在本节中,我们将使用 PyTorch 实现 SSD 模型来检测图像中目标对象的边界框,继续使用与 R-CNN 一节中相同的数据集。

(1) 加载图像数据集及所需库:

from torchvision.ops import nms
import torch
import numpy as np
from torch.utils.data import DataLoader, Dataset
from glob import glob
from matplotlib import pyplot as plt
import pandas as pd
import matplotlib.patches as mpatches
from PIL import Image
from torchvision import transformsdevice = 'cuda' if torch.cuda.is_available() else 'cpu'DATA_ROOT = 'open-images-bus-trucks/'
IMAGE_ROOT = f'{DATA_ROOT}/images'
DF_RAW = df = pd.read_csv('open-images-bus-trucks/df.csv')
print(DF_RAW.head())df = df[df['ImageID'].isin(df['ImageID'].unique().tolist())]
label2target = {l:t+1 for t,l in enumerate(DF_RAW['LabelName'].unique())}
label2target['background'] = 0
target2label = {t:l for l,t in label2target.items()}
background_class = label2target['background']
num_classes = len(label2target)

(2) 预处理数据:

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]
)
denormalize = transforms.Normalize(mean=[-0.485/0.229, -0.456/0.224, -0.406/0.255],std=[1/0.229, 1/0.224, 1/0.255]
)
def preprocess_image(img):img = torch.tensor(img).permute(2,0,1)img = normalize(img)return img.to(device).float()def find(item, original_list):results = []for o_i in original_list:if item in o_i:results.append(o_i)if len(results) == 1:return results[0]else:return results

(3) 定义数据集类:

class OpenDataset(torch.utils.data.Dataset):w, h = 300, 300def __init__(self, df, image_dir=IMAGE_ROOT):self.image_dir = image_dirself.files = glob(self.image_dir+'/*')self.df = dfself.image_infos = df.ImageID.unique()def __getitem__(self, ix):# load images and masksimage_id = self.image_infos[ix]img_path = find(image_id, self.files)img = Image.open(img_path).convert("RGB")img = np.array(img.resize((self.w, self.h), resample=Image.BILINEAR))/255.data = df[df['ImageID'] == image_id]labels = data['LabelName'].values.tolist()data = data[['XMin','YMin','XMax','YMax']].valuesdata[:,[0,2]] *= self.wdata[:,[1,3]] *= self.hboxes = data.astype(np.uint32).tolist() # convert to absolute coordinatesreturn img, boxes, labelsdef collate_fn(self, batch):images, boxes, labels = [], [], []for item in batch:img, image_boxes, image_labels = itemimg = preprocess_image(img)[None]images.append(img)boxes.append(torch.tensor(image_boxes).float().to(device)/300.)labels.append(torch.tensor([label2target[c] for c in image_labels]).long().to(device))images = torch.cat(images).to(device)return images, boxes, labelsdef __len__(self):return len(self.image_infos)

(4) 准备训练和测试数据集以及数据加载器:

from sklearn.model_selection import train_test_split
trn_ids, val_ids = train_test_split(df.ImageID.unique(), test_size=0.1, random_state=99)
trn_df, val_df = df[df['ImageID'].isin(trn_ids)], df[df['ImageID'].isin(val_ids)]
len(trn_df), len(val_df)train_ds = OpenDataset(trn_df)
test_ds = OpenDataset(val_df)train_loader = DataLoader(train_ds, batch_size=4, collate_fn=train_ds.collate_fn, drop_last=True)
test_loader = DataLoader(test_ds, batch_size=4, collate_fn=test_ds.collate_fn, drop_last=True)

(5) 定义函数在批数据训练模型并计算验证数据的准确率和损失值:

def train_batch(inputs, model, criterion, optimizer):model.train()N = len(train_loader)images, boxes, labels = inputs_regr, _clss = model(images)loss = criterion(_regr, _clss, boxes, labels)optimizer.zero_grad()loss.backward()optimizer.step()return loss@torch.no_grad()
def validate_batch(inputs, model, criterion):model.eval()images, boxes, labels = inputs_regr, _clss = model(images)loss = criterion(_regr, _clss, boxes, labels)return loss

(6) 初始化模型(模型文件参考 ssd-utils)、优化器和损失函数:

from model import SSD300, MultiBoxLoss
from detect import *model = SSD300(num_classes, device)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-5)
criterion = MultiBoxLoss(priors_cxcy=model.priors_cxcy, device=device)

(7) 训练 SSD 模型:

train_loss_epochs = []
val_loss_epochs = []for epoch in range(n_epochs):_n = len(train_loader)trn_loss = []val_loss = []for ix, inputs in enumerate(train_loader):loss = train_batch(inputs, model, criterion, optimizer)pos = (epoch + (ix+1)/_n)trn_loss.append(loss.item())train_loss_epochs.append(np.average(trn_loss))_n = len(test_loader)for ix,inputs in enumerate(test_loader):loss = validate_batch(inputs, model, criterion)pos = (epoch + (ix+1)/_n)val_loss.append(loss.item())
val_loss_epochs.append(np.average(val_loss))epochs = np.arange(n_epochs)+1
plt.plot(epochs, train_loss_epochs, 'bo', label='Training loss')
plt.plot(epochs, val_loss_epochs, 'r', label='Test loss')
plt.title('Training and Test loss over increasing epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.grid('off')
plt.show()

训练和测试损失值随时间的变化情况如下:

损失变化
(8) 对测试图像执行预测。

加载测试图像:

def show_bbs(im, bbs, clss):fig, ax = plt.subplots(ncols=2, nrows=1, figsize=(6, 6))ax[0].imshow(im)ax[0].grid(False)ax[0].set_title('Original image')if len(bbs) == 0:ax[1].imshow(im)ax[1].set_title('No objects')plt.show()returnax[1].imshow(im)for ix, (xmin, ymin, xmax, ymax) in enumerate(bbs):rect = mpatches.Rectangle((xmin, ymin), xmax-xmin, ymax-ymin, fill=False, edgecolor='red', linewidth=1)ax[1].add_patch(rect)centerx = xmin # + new_w/2centery = ymin + 20# + new_h - 10plt.text(centerx, centery, clss[ix].replace('@', ''),fontsize = 10,color='red')ax[1].grid(False)ax[1].set_title('Predicted bounding box and class')plt.show()from random import choice
image_paths = glob.glob(f'{DATA_ROOT}/images/*')
image_id = choice(test_ds.image_infos)
print(image_id)
img_path = find(image_id, test_ds.files)
original_image = Image.open(img_path, mode='r')
original_image = original_image.convert('RGB')

获取与图像中的目标对象对应的边界框、标签和置信度分数:

image_paths = glob.glob(f'{DATA_ROOT}/images/*')
for _ in range(20):image_id = choice(test_ds.image_infos)img_path = find(image_id, test_ds.files)original_image = Image.open(img_path, mode='r')bbs, labels, scores = detect(original_image, model, min_score=0.9, max_overlap=0.5,top_k=200, device=device)labels = [target2label[c.item()] for c in labels]label_with_conf = [f'{l} @ {s:.2f}' for l,s in zip(labels,scores)]print(bbs, label_with_conf)

在图像上绘制输出结果:

    show_bbs(original_image, bbs=bbs, clss=label_with_conf)#, text_sz=10)

目标检测结果

小结

SSD 使用基础网络(如 VGG16ResNet )提取图像特征,然后,通过添加额外的卷积层和特征图金字塔来获取不同尺度的特征图。每个特征图单元预测固定数量的边界框,并预测每个边界框属于不同类别的概率。为了提高检测的准确性,SSD 还引入了不同大小的默认框,用于与预测的边界框进行匹配。本文首先介绍了 SSD 模型的核心思想与目标检测流程,然后使用 PyTorch 从零开始实现了一个基于 SSD 的目标检测模型。

系列链接

PyTorch深度学习实战(1)——神经网络与模型训练过程详解
PyTorch深度学习实战(2)——PyTorch基础
PyTorch深度学习实战(3)——使用PyTorch构建神经网络
PyTorch深度学习实战(4)——常用激活函数和损失函数详解
PyTorch深度学习实战(5)——计算机视觉基础
PyTorch深度学习实战(6)——神经网络性能优化技术
PyTorch深度学习实战(7)——批大小对神经网络训练的影响
PyTorch深度学习实战(8)——批归一化
PyTorch深度学习实战(9)——学习率优化
PyTorch深度学习实战(10)——过拟合及其解决方法
PyTorch深度学习实战(11)——卷积神经网络
PyTorch深度学习实战(12)——数据增强
PyTorch深度学习实战(13)——可视化神经网络中间层输出
PyTorch深度学习实战(14)——类激活图
PyTorch深度学习实战(15)——迁移学习
PyTorch深度学习实战(16)——面部关键点检测
PyTorch深度学习实战(17)——多任务学习
PyTorch深度学习实战(18)——目标检测基础
PyTorch深度学习实战(19)——从零开始实现R-CNN目标检测
PyTorch深度学习实战(20)——从零开始实现Fast R-CNN目标检测
PyTorch深度学习实战(21)——从零开始实现Faster R-CNN目标检测
PyTorch深度学习实战(22)——从零开始实现YOLO目标检测
PyTorch深度学习实战(23)——使用U-Net架构进行图像分割
PyTorch深度学习实战(24)——从零开始实现Mask R-CNN实例分割
PyTorch深度学习实战(25)——自编码器(Autoencoder)
PyTorch深度学习实战(26)——卷积自编码器(Convolutional Autoencoder)
PyTorch深度学习实战(27)——变分自编码器(Variational Autoencoder, VAE)
PyTorch深度学习实战(28)——对抗攻击(Adversarial Attack)
PyTorch深度学习实战(29)——神经风格迁移
PyTorch深度学习实战(30)——Deepfakes
PyTorch深度学习实战(31)——生成对抗网络(Generative Adversarial Network, GAN)
PyTorch深度学习实战(32)——DCGAN详解与实现
PyTorch深度学习实战(33)——条件生成对抗网络(Conditional Generative Adversarial Network, CGAN)
PyTorch深度学习实战(34)——Pix2Pix详解与实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2775000.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【SpringBoot】JWT令牌

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;SpringBoot ⛺️稳重求进&#xff0c;晒太阳 什么是JWT JWT简称JSON Web Token&#xff0c;也就是通过JSON形式作为Web应用的令牌&#xff0c;用于各方面之间安全的将信息作为JSON对象传输…

第5章——深度学习入门(鱼书)

第5章 误差反向传播法 上一章中&#xff0c;我们介绍了神经网络的学习&#xff0c;并通过数值微分计算了神经网络的权重参数的梯度&#xff08;严格来说&#xff0c;是损失函数关于权重参数的梯度&#xff09;。数值微分虽然简单&#xff0c;也容易实现&#xff0c;但缺点是计…

CODE V的API 之 PSF数据的获取(3)

PSF的获取 文章目录 PSF的获取前言一、主要代码总结 前言 主要利用buf语句进行传递&#xff0c;在worksheet中有收藏。 一、主要代码 Sub OnRunPSF() Dim session As CVCommand Set session CreateObject("CodeV.Command.102") session.SetStartingDirectory (&q…

C++分支语句

个人主页&#xff1a;PingdiGuo_guo 收录专栏&#xff1a;C干货专栏 大家新年快乐&#xff0c;今天&#xff0c;我们来了解一下分支语句。 文章目录 1.什么是分支语句 1.if语句 基本形式 用法说明 练习 2.if-else语句 基本形式 用法说明 练习 3.switch语句 基本形式…

进程间通信(4):消息队列

先进先出&#xff0c;保证信息的有序性。 函数&#xff1a;msgget(搭配ftok)、msgsnd、msgrcv、msgctl 实现流程&#xff1a; 1、创建消息队列IPC对象 msgget 2、通信(内置函数&#xff1a;msgsnd、msgrcv) 3、删除消息队列IPC对象 msgctl write.c /* * 文件名称&…

数字图像处理实验记录九(数字形态学实验)

一、基础知识 1.形态学&#xff0c;用于从图像中提取对表达和描绘区域形状有意义的图像分量&#xff0c;使后续的识别工作能够抓住目标对象最为有本质的形状特征&#xff0c;如边界连通区域等。 2.膨胀运算&#xff1a;膨胀会使目标区域范围“变大”&#xff0c;将于目标区域接…

第三百一十五回

文章目录 1. 概念介绍2. 基本用法3. 补充用法4. 内容总结 我们在上一章回中介绍了"再谈ListView中的分隔线"&#xff0c;本章回中将介绍showMenu的用法.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在第一百六十三回中介绍了showMenu相关的内容…

C语言指针函数学习2

之前写过一篇指针函数的博文&#xff1b;复习再学习一下&#xff1b; 指针函数&#xff0c;是一个函数&#xff0c;它的返回值是指针类型&#xff1b; 之前写了一个指针函数&#xff0c;返回一个 int * 类型的指针&#xff1b;下面做一个程序&#xff0c;返回一个结构体指针&a…

如何给闲置电脑安装黑群晖

准备 diskgenius &#xff0c;黑群晖引导文件&#xff08;有些需要扩展驱动包&#xff09;&#xff0c;如果给U盘安装需要balenaEtcher或者rufus&#xff08;U盘安装还需要ChipGenus&#xff09;&#xff0c;如果给硬盘安装需要有pe推荐firePE或U启通 我以U盘为例 首先去找这…

【声明】关于抄袭我博客的声明

最近发现有人在抄袭我的博客&#xff0c;你抄了就算了&#xff0c;你连原链接也不贴&#xff0c;直接就设置的是原创的&#xff0c;你脸去哪了啊&#xff1f; 在你评论下面说了两次还在抄&#xff0c;事不过三&#xff0c;今天早上发现你又抄了一篇。既然如此&#xff0c;我就…

面向智算服务,构建可观测体系最佳实践

作者&#xff1a;蓟北 构建面向 AI、大数据、容器的可观测体系 &#xff08;一&#xff09;智算服务可观测概况 对于越来越火爆的人工智能领域来说&#xff0c;MLOps 是解决这一领域的系统工程&#xff0c;它结合了所有与机器学习相关的任务和流程&#xff0c;从数据管理、建…

前端JavaScript篇之对执行上下文的理解

目录 对执行上下文的理解创建执行上下文 对执行上下文的理解 当我们在执行JavaScript代码时&#xff0c;JavaScript引擎会创建并维护一个执行上下文栈来管理执行上下文。执行上下文有三种类型&#xff1a;全局执行上下文、函数执行上下文和eval函数执行上下文。 在写代码的时…

代码随想录算法训练营第二十五天 |216.组合总和III,17.电话号码的字母组合(已补充)

剪枝操作讲解&#xff1a;&#xff08;已观看&#xff09; 带你学透回溯算法-组合问题的剪枝操作&#xff08;对应力扣题目&#xff1a;77.组合&#xff09;| 回溯法精讲&#xff01;_哔哩哔哩_bilibili 216.组合总和III&#xff08;已观看&#xff09; 1、题目链接&#xf…

参观宋代建筑,感受传统魅力

为了更好地了解和传承中华文化&#xff0c;同时深入挖掘其在现代社会的传承与发展&#xff0c;2024年2月8日&#xff0c;曲阜师范大学计算机学院“古韵新声&#xff0c;格物致‘知’”社会实践队队员饶子恒深入考察中国传统建筑和文化&#xff0c;前往山东省菏泽市郓城县的水浒…

【Flink状态管理(二)各状态初始化入口】状态初始化流程详解与源码剖析

文章目录 1. 状态初始化总流程梳理2.创建StreamOperatorStateContext3. StateInitializationContext的接口设计。4. 状态初始化举例&#xff1a;UDF状态初始化 在TaskManager中启动Task线程后&#xff0c;会调用StreamTask.invoke()方法触发当前Task中算子的执行&#xff0c;在…

SolidWorks学习笔记——草图绘制的基本命令

目录 一、进入草图绘制 二、直线命令与删除命令 三、圆弧命令与矩形命令 四、槽口命令以及多边形命令 五、椭圆以及倒角命令 六。草图绘制中的剪裁命令 七、草图中的几何关系 八、草图绘制中的智能尺寸 九、从外部粘贴草图&#xff08;CAD&#xff09; 一、进入草图绘…

ongoDB从入门到实战之.NET Core使用MongoDB开发ToDoList系统(2)-Swagger框架集成

Swagger是什么&#xff1f; Swagger是一个规范且完整API文档管理框架&#xff0c;可以用于生成、描述和调用可视化的RESTful风格的 Web 服务。Swagger 的目标是对 REST API 定义一个标准且和语言无关的接口&#xff0c;可以让人和计算机拥有无须访问源码、文档或网络流量监测就…

Linux系统中HTTP代理的常见问题及解决方案

亲爱的Linux用户们&#xff0c;是不是有时候觉得HTTP代理就像是一个魔法盒子&#xff0c;让你在数字世界中自由穿梭&#xff1f;但是&#xff0c;就像所有的魔法物品一样&#xff0c;它也会偶尔出点小状况。今天&#xff0c;我们就来一起探讨一下Linux系统中HTTP代理的常见问题…

MyBatis之动态代理实现增删改查以及MyBatis-config.xml中读取DB信息文件和SQL中JavaBean别名配置

MyBatis之环境搭建以及实现增删改查 前言实现步骤1. 编写MyBatis-config.xml配置文件2. 编写Mapper.xml文件&#xff08;增删改查SQL文&#xff09;3. 定义PeronMapper接口4. 编写测试类1. 执行步骤2. 代码实例3. 运行log 开发环境构造图总结 前言 上一篇文章&#xff0c;我们…

Excel——合并计算

1.表格的合并计算&#xff08;单张表格/多个表格&#xff09; Q&#xff1a;请统计两个表格中各商品的总销量和总销售额&#xff0c;将结果放置在下方任意位置。 A&#xff1a;选择一个需要将合并计算数据放置区域的空白单元格 选择【数据】——【合并计算】&#xff0c;【函…