机器学习——有监督学习和无监督学习

有监督学习

简单来说,就是人教会计算机学会做一件事。

给算法一个数据集,其中数据集中包含了正确答案,根据这个数据集,可以对额外的数据希望得到一个正确判断(详见下面的例子)

回归问题

例如现在有一个房价数据集,记录了不同面积的房子的实际卖价, 现在用图表表示数据集,横轴表示房子面积,纵轴表示房子的卖价, 图画出来后,可以用一个直线或者曲线去拟合(至于选择直线还是曲线,要看具体的衡量标准),然后现在有一个需求,就是我有一个x平方的房子,想要知道这个房子的卖价, 此时就可以通过在横轴的x位置,找到直线或曲线上对应的纵轴的值y,就可以得到预估卖价。

这个房价问题是个回归问题,回归问题是指:我们想要预测连续的数据输出,即预测的结果是一个连续值,如这里房子卖出的价格就是一个连续值,还有一种类型是分类问题(详见下面),以二分类问题为例,对于某一个样本,它的结果只有两种可能:对或错, 而我们预测某个数据的结果,要么是对要么是错,也就是说结果是离散的 那么对比之下,我们预测某个面积的房子的卖价,卖价可能是一个范围里的任何数字,也就是连续的, 所以回归问题就是某个数据的结果是连续的,不是像分类问题的结果是离散的。

分类问题

例如现在有一组数据集,是不同的肿瘤大小对应它是否是恶性肿瘤(结果只有两种:是或否),现在需要预测肿瘤大小为x的肿瘤,是否是恶性肿瘤,预测的结果为y(是或否),这就是个二分类问题,即答案只有两种。除此之外,还有多分类问题,也就是答案不止两种(但也是有限种类)。

在判断肿瘤是否是恶性的这个问题上,我们判断的标准只有肿瘤大小这一个特征/属性, 而实际中,可能会根据多个特征/属性进行综合判断进而得到结果,上面的房价问题也是如此,我们只根据房屋面积这一个特征进行估价,而实际上肯定还会结合地段、交通等多个特征进行判断。如下面的数据集是根据肿瘤大小和患者年龄两个特征来判断肿瘤的性质。

无监督学习

简单来说,就是让计算机在不用人教的情况下自己学会做一件事

在上述的监督学习中,房价问题中的数据集的每个样本都清楚的知道了它的卖价,在肿瘤问题中的数据集中,每个样本也都被表明为是恶性还是良性。由此可见,在有监督学习中,对于数据集的每个样本,我们都清楚的告知了的正确答案(如肿瘤是恶性还是良性)。

而在无监督学习中,我们给算法一个数据集,不告诉算法这个数据集的每个数据点代表什么,要求算法找出数据的类型结构。

例如,给定一组不同的个体,对于每个个体,检测他们是否拥有某个特定的基因,具体做法就是,运行一个聚类算法,根据个体所拥有的基因把不同的个体归为不同类型的人,这就是无监督学习。因为在给定这些个体时,即给定数据集时,没有事先告知每个个体的类型,只是告诉算法,这里有一堆数据。我不知道这些数据是什么,不知道每个数据的类型,甚至不知道总共有哪些类型,你能自动找出这些数据的结构吗?虽然我事先不知道有哪些类型,但你能按得到的类型把这些个体进行分类吗?因为我们没有把数据集中的正确答案(即每个个体属于什么类型的人)告诉算法,所以这就是无监督学习。

聚类算法

聚类算法是无监督学习算法中的一种,对于给定的数据集,无监督学习算法可能判定数据集包含两个不同的簇,然后把这些数据分为两个不同的簇,这就是聚类算法。

聚类算法的应用举例

  • 市场细分。根据客户信息将客户分为不同的市场群体,进而进行精准销售。我们只拥有全部客户的信息,但是并不知道有哪些市场细分,也不知道某个客户属于哪种市场细分,所以让算法自己从数据中去发现这些
  • 社交网络的分析。可以得知和你联系最频繁的人,判断哪些人可能相互认知等。
  • 新闻分类。将几万条甚至更多的新闻组成不同的新闻专题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2774796.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

基于单片机的造纸纸浆液位控制系统结构设计

摘要:为适应无人化与高效化制浆造纸生产体系,造纸企业趋于以嵌入式技术优化造纸过 程中的纸浆液位控制系统,以单片机与传感器相互耦合实现纸浆液位控制。本文基于单片机 设计了造纸纸浆液位控制系统,其结构由控制模块、信息采集模块、物联网模…

图数据库 之 Neo4j - Browser 介绍(3)

Neo4j Browser 介绍 Neo4j Browser 中有 3 个模块,侧边栏,Cypher 编辑器与结果栏,在进入 Neo4j Browser 时结果栏会展示欢迎界面。 Cypher 编辑器 Cypher 是一种图形查询语言,用于查询和操作图形数据库。它是 Neo4j 图形数据库的…

uniapp+uView 【详解】录音,自制音频播放器

效果预览 代码实现 <template><view class"btnListBox"><view class"audioBox" v-if"audioLength"><u-row><u-col span"2"><u--text aligncenter :text"currentTime"></u--text>…

[Vulnhub靶机] DriftingBlues: 4

[Vulnhub靶机] DriftingBlues: 4靶机渗透思路及方法&#xff08;个人分享&#xff09; 靶机下载地址&#xff1a; https://download.vulnhub.com/driftingblues/driftingblues4_vh.ova 靶机地址&#xff1a;192.168.67.23 攻击机地址&#xff1a;192.168.67.3 一、信息收集 …

使用secure+xming通过x11访问ubuntu可视化程序

windows使用securexming通过x11访问ubuntu可视化程序 windows机器IP&#xff1a;192.168.9.133 ubuntu-desktop20.04机器IP&#xff1a;192.168.9.190 windows下载xming并安装 按照图修改xming配置 开始->xming->Xlaunch 完成xming会在右下角后台运行 windows在sec…

20240203在WIN10下使用GTX1080配置stable-diffusion-webui.git不支持float16精度出错的处理

20240203在WIN10下使用GTX1080配置stable-diffusion-webui.git不支持float16精度出错的处理 2024/2/3 21:23 缘起&#xff1a;最近学习stable-diffusion-webui.git&#xff0c;在Ubuntu20.04.6下配置SD成功。 不搞精简版本&#xff1a;Miniconda了。直接上Anacoda&#xff01; …

SpringBoot之事务源码解析

首先事务是基于aop的&#xff0c;如果不了解aop的&#xff0c;建议先去看下我关于aop的文章: Spring之aop源码解析  先说结论&#xff0c;带着结论看源码。首先&#xff0c;在bean的生命周期中&#xff0c; 执行实例化前置增强&#xff0c;会加载所有切面并放入缓存&#xff0…

汉字拼音桥接交流与传承的关键

汉字拼音&#xff0c;一种基于拉丁字母为汉字标注读音的发音指导系统&#xff0c;自20世纪50年代推广以来便成为学习汉语的基石。这种独特的拼写系统不仅在汉语的教育与学习领域起到不可替代的作用&#xff0c;而且对文化的传承、科技的进步以及国际交流都产生了深远的影响。 汉…

MFC实现遍历系统进程

今天我们来枚举系统中的进程和结束系统中进程。 认识几个API 1&#xff09;CreateToolhelp32Snapshot 用于创建系统快照 HANDLE WINAPI CreateToolhelp32Snapshot( __in DWORD dwFlags, //指定快照中包含的系统内容__in DWORD th32P…

如何使用CLZero对HTTP1.1的请求走私攻击向量进行模糊测试

关于CLZero CLZero是一款功能强大的模糊测试工具&#xff0c;该工具可以帮助广大研究人员针对HTTP/1.1 CL.0的请求走私攻击向量进行模糊测试。 工具结构 clzero.py - 工具主脚本&#xff1b; default.py - 包含了大多数标准攻击测试方法和字符&#xff1b; exhaustive.py - 包…

微信公众号接入智能聊天机器人

微信公众号免费接入智能聊天机器人 准备物料操作步骤1.准备1个域名2.讯飞星火认知大模型3.github帐号4.vercel1.登录[vercel](https://vercel.com/login),使用github帐号登录2.创建一个新应用&#xff0c;通过github导入(它会自动拉取github仓库的项目)3.添加domains 5.微信公众…

【MySQL】学习和总结DCL的权限控制

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-Bl9kYeLf8GfpdQgL {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

k8s-项目部署案例

一、容器交付流程 在k8s平台部署项目流程 在K8s部署Java网站项目 DockerFile 如果是http访问&#xff0c;需要在镜像仓库配置可信任IP 三、使用工作负载控制器部署镜像 建议至少配置两个标签 一个是声明项目类型的 一个是项目名称的 继续配置属性 资源配额 健康检查 五、使…

堆排序-Python实现

简述 堆排序&#xff08;Heap Sort&#xff09;是一种基于比较的排序算法&#xff0c;它利用堆这种数据结构所设计的一种排序算法。堆排序是一种选择排序&#xff0c;它的最坏&#xff0c;最好&#xff0c;平均时间复杂度均为O(nlogn)&#xff0c;它也是不稳定排序。 堆 堆排…

JCIM | MD揭示PTP1B磷酸酶激活RtcB连接酶的机制

Background 内质网应激反应&#xff08;UPR&#xff09; 中的一个重要过程。UPR是由内质网中的三种跨膜传感器&#xff08;IRE1、PERK和ATF6&#xff09;控制的细胞应激反应&#xff0c;当内质网中的蛋白质折叠能力受到压力时&#xff0c;UPR通过减少蛋白质合成和增加未折叠或错…

零基础学Python(8)— 流程控制语句(上)

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。流程控制语句是编程语言中用于控制程序执行流程的语句&#xff0c;本节课就带大家认识下Python语言中常见的流程控制语句&#xff01;~&#x1f308; 目录 &#x1f680;1.程序结构 &#x1f680;2.最简单的if语句 &a…

论 Scratch 版“愤怒的小鸟”的资源(10000 余块代码)

资源链接 “愤怒的小鸟”资源&#xff1a;https://download.csdn.net/download/leyang0910/88820527 游戏 SJA 分析及&#xff1a;角色数量&#xff1a;12&#xff0c;素材数量&#xff1a;214&#xff0c;积木数量&#xff1a;1442&#xff0c;音频数量&#xff1a;11 “愤怒…

【复现】万户 ezOFFICE SQL注入漏洞_42

目录 一.概述 二 .漏洞影响 三.漏洞复现 1. 漏洞一&#xff1a; 四.修复建议&#xff1a; 五. 搜索语法&#xff1a; 六.免责声明 一.概述 万户ezOFFICE协同管理平台分为企业版和政务版。 解决方案由五大应用、两个支撑平台组成&#xff0c;分别为知识管理、工作流程、沟…

考研数据结构笔记(5)

单链表的查找 按位查找(O(n))按值查找(O(n))单链表长度(O(n))小结 基于带头结点的代码 按位查找(O(n)) 按值查找(O(n)) 单链表长度(O(n)) 小结

牛客网SQL进阶137:第二快/慢用时之差大于试卷时长一半的试卷

官网链接&#xff1a; 第二快慢用时之差大于试卷时长一半的试卷_牛客题霸_牛客网现有试卷信息表examination_info&#xff08;exam_id试卷ID, tag试卷类别,。题目来自【牛客题霸】https://www.nowcoder.com/practice/b1e2864271c14b63b0df9fc08b559166?tpId240 0 问题描述 试…