多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

目录

    • 多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

基本介绍

1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测(完整源码和数据)
RF-AdaBoost是一种将RF和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。RF-AdaBoost算法的基本思想是将RF作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个RF模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,多变量时序预测;
4.data为数据集,excel数据,前多列输入,最后1列输出,main.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE、MSE、RMSE多指标评价.
6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式资源处下载Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测。
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
function Y_hat = regRF_predict(p_train, model)% requires 2 arguments% p_train: data matrix% model: generated via regRF_train functionif nargin ~= 2error('need atleast 2 parameters, X matrix and model');endY_hat = mexRF_predict(p_train', model.lDau, model.rDau, model.nodestatus, model.nrnodes, ...model.upper, model.avnode, model.mbest, model.ndtree, model.ntree);if ~isempty(find(model.coef, 1)) % for bias corrY_hat = model.coef(1) + model.coef(2) * Y_hat;endclear mexRF_predict

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2774284.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

YOLOv8改进 | 利用训练好权重文件计算YOLOv8的FPS、推理每张图片的平均时间(科研必备)

一、本文介绍 本文给大家带来的改进机制是利用我们训练好的权重文件计算FPS,同时打印每张图片所利用的平均时间,模型大小(以MB为单位),同时支持batch_size功能的选择,对于轻量化模型的读者来说,本文的内容对你一定有帮助,可以清晰帮你展示出模型速度性能的提升以及轻量…

极致成本,如何基于容器计算服务 ACS 打造企业级幻兽帕鲁私服 SaaS 服务?

作者:韩运韬(青炽) 《幻兽帕鲁》是一款最近大热的开放世界生存游戏。据报道。上市不到一周,《幻兽帕鲁》销量已突破 700 万份,成为名副其实的现象级游戏。根据游戏数据库网站 SteamDB 的数据显示,《幻兽帕…

QTabWidget和QTabBar控件样式设置(qss)

QTabWidget和QTabBar控件样式设置 1、QTabWidget样式可自定义的有哪些示例:效果图 2、QTabBar样式可自定义的有哪些示例效果图 1、QTabWidget样式可自定义的有哪些 QTabWidget::pane{} 定义tabWidgetFrameQTabWidget::tab-bar{} 定义TabBar的位置QTabWidget::tab{}定…

性能篇:如何解决高并发下 I/O 瓶颈?

我们可以有效地解决高并发下I/O瓶颈的问题,提升系统的性能。当然,实际场景中的优化可能涉及到更多的细节和技术,但希望这篇文章能为大家提供一些思路和方法。​ 引言 大家好,我是小米!今天我们来聊一个在高并发场景…

【Netty技术专题】「原理分析系列」Netty强大特性之Native transports扩展开发实战

Netty强大特性之Native transports技术原理分析 背景介绍JNI概念介绍不同平台的JNI实现 使用Native transports库Maven的分类器(Classifier)使用Linux native transport使用MacOS/BSD native transport库构建native transport库Linux版本要求MacOS/BSD版…

制度下降算法c语言

#include<stdio.h> #include<string.h> int location0; //遍历字符串的当前位置 char arr[20]"idid*id#"; void error(); //错误提示函数 /* 每一个非终结符都构造一个函数 */ void E(char t); void Ep(char t); void T(char t); void Tp(char t);…

Python 线性回归可视化 并将回归函数放置到图像上

import matplotlib.pyplot as plt import scipy import seaborn as sns# 加载内置的数据集 df sns.load_dataset(tips)#create regplot p sns.regplot(xtotal_bill, ytip, datadf)#calculate slope and intercept of regression equation slope, intercept, r, p, sterr sci…

基于BatchNorm的模型剪枝【详解+代码】

文章目录 1、BatchNorm&#xff08;BN&#xff09;2、L1与L2正则化2.1 L1与L2的导数及其应用2.2 论文核心点 3、模型剪枝的流程 ICCV经典论文&#xff0c;通俗易懂&#xff01;论文题目&#xff1a;Learning Efficient Convolutional Networks through Network Slimming卷积后能…

《动手学深度学习(PyTorch版)》笔记7.6

注&#xff1a;书中对代码的讲解并不详细&#xff0c;本文对很多细节做了详细注释。另外&#xff0c;书上的源代码是在Jupyter Notebook上运行的&#xff0c;较为分散&#xff0c;本文将代码集中起来&#xff0c;并加以完善&#xff0c;全部用vscode在python 3.9.18下测试通过&…

CC工具箱使用指南:【获取字段的所有唯一值】

一、简介 这个工具的目的是获取选定要素图层的字段的所有唯一值。 一般就是用于查看&#xff0c;比如说看一下规划用地有多少种地类&#xff0c;都是哪些地类。 二、工具参数介绍 点击【信息获取】组里的【获取字段的所有唯一值】工具&#xff1a; 即可打开下面的工具框界面…

Codeforces Round 923 (Div. 3)E. Klever Permutation 找规律,有共同区间

Problem - E - Codeforces 目录 Source of idea: 思路&#xff1a; 代码&#xff1a; 另一个up的找规律的解法&#xff1a; Source of idea: Codeforces Round 923(A-F题解) - 哔哩哔哩 (bilibili.com) 思路&#xff1a; 上面up分析的很好。两个相邻区间也就端点不一样&…

干货总结!Dockerfile编写优秀实践

Dockerfile 优秀实践 1. 善用.dockerignore文件 Docker 是CS架构&#xff0c;这就意味着 Client 和 Server 可以在不同的主机上。在构建镜像的时候&#xff0c;Client 会把所有需要的文件打包发送给 Server&#xff0c;这些发送的文件叫做 build context 默认情况下&#xf…

深度学习的新进展:解析技术演进与应用前景

深度学习的新进展&#xff1a;解析技术演进与应用前景 深度学习&#xff0c;作为人工智能领域的一颗璀璨明珠&#xff0c;一直以来都在不断刷新我们对技术和未来的认知。随着时间的推移&#xff0c;深度学习不断迎来新的进展&#xff0c;这不仅推动了技术的演进&#xff0c;也…

百面嵌入式专栏(面试题)C语言面试题22道

沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇我们将介绍C语言相关面试题 。 宏定义是在编译的哪个阶段被处理的?答案:宏定义是在编译预处理阶段被处理的。 解读:编译预处理:头文件包含、宏替换、条件编译、去除注释、添加行号。 写一个“标准”宏MIN,这个…

FPGA高端项目:解码索尼IMX327 MIPI相机转USB3.0 UVC 输出,提供FPGA开发板+2套工程源码+技术支持

目录 1、前言免责声明 2、相关方案推荐我这里已有的 MIPI 编解码方案 3、本 MIPI CSI-RX IP 介绍4、个人 FPGA高端图像处理开发板简介5、详细设计方案设计原理框图IMX327 及其配置MIPI CSI RX图像 ISP 处理图像缓存UVC 时序USB3.0输出架构FPGA逻辑设计工程源码架构SDK软件工程源…

2023年ABC123公众号年刊下载(PDF电子书)

Part1 前言 大家好&#xff0c;我是ABC_123。2023年公众号正式更名为"希潭实验室"。除了分享日常红队攻防、渗透测试技术文章之外&#xff0c;重点加强了APT案例分析方面的内容。公众号关注度得到进一步提升&#xff0c;关注人数已达到3万5千人。原计划在2023年编写…

统一身份认证系统架构设计与实践总结

随着互联网的快速发展和应用的普及&#xff0c;人们在各个网站和应用上需要不同的账号和密码进行身份认证。为了解决这个问题&#xff0c;统一身份认证系统应运而生。本文将总结统一身份认证系统的架构设计与实践经验&#xff0c;帮助读者了解如何设计和实现一个高效、安全的统…

2024幻兽帕鲁服务器多少钱一套?

2024年幻兽帕鲁服务器价格表更新&#xff0c;阿里云、腾讯云和华为云Palworld服务器报价大全&#xff0c;4核16G幻兽帕鲁专用服务器阿里云26元、腾讯云32元、华为云26元&#xff0c;阿腾云atengyun.com分享幻兽帕鲁服务器优惠价格表&#xff0c;多配置报价&#xff1a; 幻兽帕鲁…

第三百一十三回

文章目录 1. 概念介绍2. 实现方法2.1 obscureText属性2.2 decoration属性 3. 示例代码4. 内容总结 我们在上一章回中介绍了"如何实现倒计时功能"相关的内容&#xff0c;本章回中将介绍如何实现密码输入框.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍…

计划任务功能优化,应用商店上架软件超过100款,1Panel开源面板v1.9.6发布

2024年2月7日&#xff0c;现代化、开源的Linux服务器运维管理面板1Panel正式发布v1.9.6版本。 在v1.9.5和v1.9.6这两个小版本中&#xff0c;1Panel针对计划任务等功能进行了多项优化和Bug修复。此外&#xff0c;1Panel应用商店新增了3款应用&#xff0c;上架精选软件应用超过1…