自然语言处理(第16课 机器翻译4、5/5)

一、学习目标

1.学习各种粒度的系统融合方法

2.学习两类译文评估标准

3.学习语音翻译和文本翻译的不同

4.学习语音翻译实现方法

二、系统融合

        以一个最简单的例子来说明系统融合,就是相当于用多个翻译引擎得到不同的翻译结果,然后选择其中最好的作为最终结果:

        不同于分类方法中的系统融合,因为分类方法中,各引擎的输出结果是类别,可以使用投票法(少数服从多数)、取均值等方法,机器翻译的结果是译文,是不能使用投票法、取均值法来得到结果的。

        于是在机器翻译中,针对不同粒度的系统融合方法,需要对输出们“加和”的操作中进行变动,包括:(1)句子级系统融合;(2)词语级系统融合;(3)词语级系统融合;(4)基于深度学习的系统融合。

        1.句子级系统融合

        其核心思想是计算一个输出与其它输出的相似度,加和取平均。然后每个输出都有一个对其他输出的相似度加和平均结果,最好的结果就是相似度最大的那个,例子如下:

        优点:只需要计算就能得到结果,方便。

        缺点:如果每个翻译引擎都翻译得不好,最终结果也不好。

        2.短语级系统融合

        如果能回想起前面讲过的短语级的机器翻译,就是像它那样使用对齐一致性的词语划分方法来对翻译结果进行划分,然后选取出其中出现次数多的短语组合形成新的结果。例子如下:

        优点:能找到比句子级系统融合更优的结果。

        缺点:需要足够多的翻译引擎才能有提升。

        3.词语级系统融合

        我们先看其一个例子:(其中null表示为空)

 

         显然,词语级系统融合的关键在于构建上面的有向图,从而可以找到得分最高的路径作为最优结果,而构建有向图的基础是对齐操作。所以对齐是其重中之重。其整体模型运行过程如下:

        4.基于深度学习的系统融合
 

        其重点在于使用了注意力机制,就相当于分类模型系统融合中的adaboost,给每个系统都分配权值,从而能汇聚所有翻译引擎的信息。整体结构如下:

三、译文评估方法

         不像分类任务,直接统计模型输出结果是否分类成功,从而得到正确率或者错误率去评判模型的好坏。机器翻译翻译的结果是文本,标签也是文本,无法直接进行比较,而且文本也有同意性,不同句子可以表达同种意思。于是机器翻译特别地设计了各种译文评估方法。

        1.主观评测

        主观评测就是让双语翻译专家来打分,考察标准分三类:流畅度、充分性、语义保持性。三个标准的评分表如下:

 

 

        以一个例子来说明:

 

         显然,主观评测的结果是十分准确且合理的。但确点也很明显,对于上百万条翻译语句,让人工去评判,消耗的时间和资源是不等价的。

        2.客观评测

        客观评测就是让程序自己根据模型输出结果和参考译文来计算正确率和错误率。几个常见的是:

        一个十分常用的评价法是BLEU评价法:

        我们用一个例子来理解它:

        如果n=1,则系统译文的词集合为{the},由于the在参考译文中出现,故得分为1/1=1;

        再取n=2,则系统译文的词集合为{'the the'},而'the the'未在参考译文中出现,故得分0/1=0;

        同理n=3、4,(一般n取到4)得分都为0,综合得分为1+0+0+0=1。(当然这里可以归一化一下,甚至给不同的n的得分分配不同权重)。

        于是我们可以有最后的计算公式:(w就是上面说的权重,p是各个得分,BP是惩罚项,用于惩罚过短的句子,原因可见红字部分)

        3.基于深度学习的客观评测

         其主要思想是通过注意力机制来计算得分。以例子来说明:

        网格左边是原文,下面是译文(这里是英译英,但理解其思想就行)。网格中就是左边词与下边词的注意力度,相当于联系性,所以取最大的得分,认为其联系性最大(可以互相翻译),网格之外还有一排数据,是说明句子各词的重要性(权重),网格红色得分乘上权重,最后就可以得到总分,继而可求召回率、准确率、F1。

四、语音翻译

        1.语音翻译的定义

        语音翻译的基本原理相比大家都能猜到:将源语言识别出源文本、源文本转目标文本、目标文本转目标语音:(但是,要注意的是,源语言和目标语言的转换应该是双向的)

        2.语音翻译与文本翻译的不同

        语音翻译是肯定比文本翻译难的,

        在语音识别上,有:(1)系统工作环境的多样、(2)复杂的口语习惯、(3)语音库收集难。(显然还有:杂音、集外词、缺少标点符号)

        在语言表示上,口语翻译还有的特点:

         在语言使用上,有省略、冗余等问题。

        在语音合成上,有自然、流畅、清楚、有情感、与说话人语音一致等要求。

        此外,手势和表情也会对语言的表达有辅助作用。

五、语音翻译实现

        1.重点问题

        现有的语音翻译基本都没做这些问题的解决方法。

        2.级联方法

        级联方法就是前面说的语音识别-机器翻译-语音合成三步结合的方法。过程如下:

        如上面所说,其有三个重要的问题:时间延迟、错误累计、参数冗余。于是提出端到端的方法。

        3.端到端方法

        端到端的思想是,直接将源语言语音输入到模型中,模型输出目标语言的文本,通过语音合成输出目标语音:

        二者比较,各有优缺点:

        

六、本章小结

1.机器翻译的系统融合方法,并由于问题不同引起的融合方法的不同和评估方法的不同

2.语音翻译与文本翻译的不同,语音翻译的两种实现方法。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2662154.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

GBASE南大通用-小内存单机安装GBase 8c分布式数据库实践

* 这种小内存部署方式仅用于分布式数据库个人学习使用,不建议用于其他用途。 随着数据高并发复杂场景业务需求不断增多,信息数据呈现出爆炸式增长、多源多维、数据类型繁复等特征。在这一趋势下,目前分布式数据库因其架构的天然优势&#xf…

【MySQL】数据库之小题练习(完全备份和增量备份的数据恢复,以及断点恢复)

目录 先创建库,创建表,完成三次数据的录入以及第一次的完全备份,第二次和第三次的增量备份; 第一次完全备份操作 第二次插入后做增量备份操作 第三次 插入后做增量备份操作 1、完全备份恢复,获取一班的人的成绩 …

SAP问题 OPEN SQL 取不到值

关键:数据库中有数据,但是open sql取不到数据 背景: 标准程序在测试环境正常执行,在生产环境报错。 解决过程: 第一步:分析执行结果不一致可能的原因: 1.测试数据问题,可能性小&…

甄知猪齿鱼2.6版本来了,自动化助手帮你轻松提升生产力!

年末之际,我们带来了猪齿鱼V2.6.0的新版本大礼包!在这次更新中,我们进行了自动化功能的升级和优化,助您轻松提升生产力,更好地应对各种项目管理挑战。 自动化助手 自动化助手是由触发器、条件、动作3个元素组成&#x…

打开3d模型时显示不匹配怎么办---模大狮模型网

当3d模型打开时,显示不匹配的情况可能有以下几个原因和解决方法: 文件格式不匹配:检查您所使用的3D软件是否支持打开该模型文件格式。不同的软件支持不同的文件格式,如果文件格式不匹配,可能无法正确加载和显示模型。尝…

反射讲解(有图有真相)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、反射是什么?二、反射有啥好处?1. 没反射2. 有反射 三、反射的常用方法1. 获取 Class 对象:2. 获取类的构造方法&#xf…

5214手持式千兆网络质量测试仪

5214手持式千兆网络质量测试仪 简述: 5214 手持式千兆网络质量测试仪是中电科思仪科技股份有限公司研发的综合性网络测 试仪器。此仪器具有网络故障的排查,网络设备的现场维护,网络性能的测试和分析,协议 仿真、解码、统计等功能…

目标检测 YOLOv5 - 推理时的数据增强

目标检测 YOLOv5 - 推理时的数据增强 flyfish 版本 YOLOv5 6.2 参考地址 https://github.com/ultralytics/yolov5/issues/303在训练时可以使用数据增强,在推理阶段也可以使用数据增强 在测试使用数据增强有个名字叫做Test-Time Augmentation (TTA) 实际使用中使…

Arduino驱动VL6180X光学测距传感器(OLED显示)

Arduino驱动VL6180X光学测距传感器(OLED显示) 简介原理模块参数接线图代码结果 简介 VL6108X三合一光电模块,芯片内集成了IR VSEL(vertical-cavity surface-emitting laser)红外垂直腔面发射激光器光源、接近传感器、环境光传感器&#xff0…

Java创建线程执行任务的方法(一)

目录 1.继承Thread类 2.实现Runnab类 2.1实现Runnable类 2.2使用Lambda表达式 3.实现Callable类 3.1返回Integer类型数据 3.2返回String类型数据 3.3返回Object类型数据 4.匿名内部类 创建线程的方法:继承Thread类;实现Runnab类;匿名…

Apipost一键压测参数化功能详解

最近更新中Apipost对UI页面进行了一些调整,另外一键压测功能支持参数化!本篇文章将详细介绍这些改动! API调试页面的细节改动 在请求区填入请求参数或脚本时会有相应的标识 如在Query中填入多个参数时上方会展示数量 在预、后执行脚本中写…

基于Java车间工时管理系统(源码+部署文档)

博主介绍: ✌至今服务客户已经1000、专注于Java技术领域、项目定制、技术答疑、开发工具、毕业项目实战 ✌ 🍅 文末获取源码联系 🍅 👇🏻 精彩专栏 推荐订阅 👇🏻 不然下次找不到 Java项目精品实…

海外社媒营销避坑指南:盘点最容易被人忽视的7大坑!

在全球数字化浪潮的推动下,海外社媒营销成为企业推广品牌、产品和服务的重要途径。然而,与其诱人的前景相对应的是众多的坑,需要企业精心规划和巧妙应对。本文Nox聚星将和大家盘一盘企业在海外社媒营销之路上最容易忽视的7个大坑,…

一面“短刀”出鞘,一面撤回IPO,蜂巢能源决定求稳

刚刚在12月12日的第四届电池日上全球首发蜂速超快充磷酸铁锂短刀电池,10天之后便主动撤回已经过上交所两次问询的IPO申请,终止了自己奔赴科创板的上市之旅。动力电池新贵蜂巢能源这套动作,让市场颇为遗憾——虽然当前国内资本市场环境确实不同…

AI赋能金融创新:技术驱动的未来金融革命

人工智能(AI)作为一种技术手段,正逐渐改变金融行业的方方面面。从风险管理到客户体验,从交易执行到反欺诈,AI带来了许多创新和机遇。本文将探讨AI在金融领域的应用和其赋能的金融创新。 金融领域一直以来都面临着复杂的…

计算机网络【DHCP动态主机配置协议】

DHCP 出现 电脑或手机需要 IP 地址才能上网。大刘有两台电脑和两台手机,小美有一台笔记本电脑、一台平板电脑和两台手机,老王、阿丽、敏敏也有几台终端设备。如果为每台设备手动配置 IP 地址,那会非常繁琐,一点儿也不方便。特别是…

潜力股的印度市场,为啥被风险投资人看空了?

KlipC报道:自2021年第四季度,印度超过英国,稳居世界第五大经济体之后,“印度市场”的潜力被不断提及。 KlipC的分析师Allen表示:“但对于风险投资行业来说,从2023年的数据看,似乎像是遭遇了一场…

鸿鹄电子招投标系统:源码级别解析电子招投标的精髓

招投标管理系统是一个集门户管理、立项管理、采购项目管理、采购公告管理、考核管理、报表管理、评审管理、企业管理、采购管理和系统管理于一体的综合性应用平台。它适用于招标代理、政府采购、企业采购和工程交易等业务的企业,旨在提高项目管理的效率和质量。该系…

SpireCV项目实战——电诈园区人员及房屋情况识别

项目介绍前言 随着科技的进步和大数据时代的到来,计算机视觉技术逐渐渗透到各个行业领域,为人们的生活和工作带来了诸多便利。近年来,电信诈骗案件频发,给社会带来了巨大的经济损失和心理负担。电诈园区作为电信诈骗的高发区域&a…

【PyQt5】QComboBox文字居中

你永远也无法预料到,Qt到底埋了多少坑(我的是PyQt5), 一个破文本居中都要搞那么麻烦 一堆样式这里不生效那里不生效的真的是离谱 代码运行结果: import sys from PyQt5.QtWidgets import QApplication,QComboBox from PyQt5.QtWidgets impor…