YOLOv5改进 | 2023注意力篇 | FocusedLinearAttention聚焦线性注意力

一、本文介绍

本文给大家带来的改进机制是FLAttention(聚焦线性注意力)是一种用于视觉Transformer模型的注意力机制(但是其也可以用在我们的YOLO系列当中从而提高检测精度),旨在提高效率和表现力。其解决了两个在传统线性注意力方法中存在的问题:聚焦能力和特征多样性。这种方法通过一个高效的映射函数和秩恢复模块来提高计算效率和性能,使其在处理视觉任务时更加高效和有效。简言之,FLAttention是对传统线性注意力方法的一种重要改进,提高了模型的聚焦能力和特征表达的多样性。通过本文你能够了解到:FLAttention的基本原理和框架,能够在你自己的网络结构中进行添加

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

一、本文介绍

二、FLAttention的机制原理

2.1 Softmax和线性注意力机制的对比

2.2 FLAttention的提出

2.3 效果对比

三、实验效果对比

四、FLAttention代码

五、添加FLAttention到模型中

5.1 细节修改教程

5.1.1 修改一

​4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

5.2 FLAttention的yaml文件和训练截图

5.2.1 FLAttention的yaml文件一

5.2.2 FLAttention的yaml文件二 

5.2.2 FLAttention的训练过程截图 

六、全文总结 


二、FLAttention的机制原理

论文地址:官方论文地址

代码地址:官方代码地址


2.1 Softmax和线性注意力机制的对比

上面的图片是关于比较Softmax注意力和线性注意力的差异。在这张图中,Q、K、V 分别代表查询、键和值矩阵,它们的维度为 R N×d。这里提到的几个关键点包括:

1. Softmax注意力:它需要计算查询和键之间的成对相似度,导致计算复杂度为 O(N^2 d)。这种方法在计算上是昂贵的,特别是当处理大规模数据时。

2. 线性注意力:通过适当的近似手段,线性注意力可以解耦Softmax操作,并通过先计算K^{T}V来改变计算顺序,从而将复杂度降低到 O(Nd^{^{2}})。由于在现代视觉Transformer设计中通道维度 d 通常小于标记数 N(例如,在DeiT中d=64, N=196,在Swin Transformer中d=32, N=49),线性注意力模块实际上降低了总体计算成本。

此处提出了线性注意力机制的优势(为了后面提出论文提到的注意力机制在线性注意力机制上的优化):线性注意力模块因此能够在节省计算成本的同时,享受更大的接收域和更高的吞吐量的好处。

总结:这张图片可能是在说明线性注意力如何在保持注意力机制核心功能的同时,提高计算效率,尤其是在处理大规模数据集时的优势。这种方法对于改善视觉Transformer的性能和效率具有重要意义(我下面会出将其用在RT-DETR的模型上看看效果)


2.2 FLAttention的提出

线性注意力的限制和改进: 尽管线性注意力降低了复杂度,但现有的线性注意力方法仍存在性能下降的问题,并可能因映射函数带来额外的计算开销。为了解决这些问题,作者提出了一个新颖的聚焦线性注意力(Focused Linear Attention)模块。该模块通过简单的映射函数调整查询和键的特征方向,使注意力权重更加明显。此外,还通过深度卷积(DWC)应用于原始注意力矩阵的秩恢复模块来增加特征多样性。

Focused Linear Attention(聚焦线性注意力)是一种用于视觉Transformer模型的注意力机制(但是其也可以用在我们的YOLO系列当中从而提高检测精度),旨在提高效率和表现力。它解决了传统线性注意力方法的两个主要问题:

1. 聚焦能力: 以往的线性注意力缺乏足够的聚焦能力,导致模型难以有效地关注重要特征。Focused Linear Attention通过改进的机制增强了这种聚焦能力。

2. 特征多样性: 传统方法在特征表达上缺乏多样性,影响了模型的表现力。Focused Linear Attention通过特殊的设计来增加特征的多样性和丰富性。

这种方法通过一个高效的映射函数和秩恢复模块来提高计算效率和性能,使其在处理视觉任务时更加高效和有效。

总结:Focused Linear Attention是对传统线性注意力方法的一种重要改进,提高了模型的聚焦能力和特征表达的多样性。


2.3 效果对比

上面的图片显示了多个视觉Transformer模型的性能和计算复杂度的比较。图中分为四个部分:

1. PVT: 对比了不同版本的PVT(Pyramid Vision Transformer),DeiT(Data-efficient Image Transformer),以及T2T(Tokens-to-Token ViT)的Top-1准确率和计算量(FLOPs)。

2. PVT v2: 类似地,展示了PVT v2、ConvNext、DAT(Deformable Attention Transformer)的性能对比。

3. Swin: 对比了Swin Transformer、CvT(Convolutional vision Transformer),以及CoTNet(Contextual Transformer Network)的模型。

4. CSwin: 展示了CSwin Transformer、MViTv2、CoAtNet的性能对比。

在每个图中,还包括了作者提出的FLatten版本的Transformer模型(标记为“Ours”),其在每个分类中都显示了相对较高的准确率或者在相似的FLOPs计算量下具有竞争力的准确率。

右侧的表格详细列出了不同模型的分辨率(Reso)、参数数量(#Params)、计算量(Flops)和Top-1准确率。表中突出了FLatten版本的Transformer模型在Top-1准确率上相对于原始模型的提升(括号中的百分点)。

个人总结:这张图片展示了通过改进的线性注意力模块,即FLatten模型,在保持或稍微增加计算量的前提下,提高了Transformer架构的图像识别准确率。


三、实验效果对比


四、FLAttention代码

在场的FocusedLinearAttention代码是用于Transformer的想要将其用于YOLO上是需要进行很大改动的,所以我这里进行了挺多的改动的,创作不易而且免费给大家看,所以如果能够帮助到大家希望大家能给点个赞和关注支持一下。

import torch.nn as nn
import torch
from einops import rearrangedef autopad(k, p=None, d=1):  # kernel, padding, dilation# Pad to 'same' shape outputsif d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))class FocusedLinearAttention(nn.Module):def __init__(self, dim, num_patches=64, num_heads=8, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0, sr_ratio=1,focusing_factor=3.0, kernel_size=5):super().__init__()assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."self.dim = dimself.num_heads = num_headshead_dim = dim // num_headsself.q = nn.Linear(dim, dim, bias=qkv_bias)self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)self.sr_ratio = sr_ratioif sr_ratio > 1:self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)self.norm = nn.LayerNorm(dim)self.focusing_factor = focusing_factorself.dwc = nn.Conv2d(in_channels=head_dim, out_channels=head_dim, kernel_size=kernel_size,groups=head_dim, padding=kernel_size // 2)self.scale = nn.Parameter(torch.zeros(size=(1, 1, dim)))# self.positional_encoding = nn.Parameter(torch.zeros(size=(1, num_patches // (sr_ratio * sr_ratio), dim)))def forward(self, x):B, C, H, W = x.shape  # 输入为四维:[批次大小, 通道数, 高度, 宽度]dtype, device = x.dtype, x.device# 调整输入以匹配原始模块的预期格式x = rearrange(x, 'b c h w -> b (h w) c')q = self.q(x)if self.sr_ratio > 1:x_ = x.permute(0, 2, 1).reshape(B, C, H, W)x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)x_ = self.norm(x_)kv = self.kv(x_).reshape(B, -1, 2, C).permute(2, 0, 1, 3)else:kv = self.kv(x).reshape(B, -1, 2, C).permute(2, 0, 1, 3)k, v = kv[0], kv[1]N = H * W  # 序列长度# 重新生成位置编码positional_encoding = nn.Parameter(torch.zeros(size=(1, N, self.dim), device=device))k = k + positional_encodingfocusing_factor = self.focusing_factorkernel_function = nn.ReLU()scale = nn.Softplus()(self.scale)q = kernel_function(q) + 1e-6k = kernel_function(k) + 1e-6q = q / scalek = k / scaleq_norm = q.norm(dim=-1, keepdim=True)k_norm = k.norm(dim=-1, keepdim=True)q = q ** focusing_factork = k ** focusing_factorq = (q / q.norm(dim=-1, keepdim=True)) * q_normk = (k / k.norm(dim=-1, keepdim=True)) * k_normbool = Falseif dtype == torch.float16:q = q.float()k = k.float()v = v.float()bool = Trueq, k, v = (rearrange(x, "b n (h c) -> (b h) n c", h=self.num_heads) for x in [q, k, v])i, j, c, d = q.shape[-2], k.shape[-2], k.shape[-1], v.shape[-1]z = 1 / (torch.einsum("b i c, b c -> b i", q, k.sum(dim=1)) + 1e-6)if i * j * (c + d) > c * d * (i + j):kv = torch.einsum("b j c, b j d -> b c d", k, v)x = torch.einsum("b i c, b c d, b i -> b i d", q, kv, z)else:qk = torch.einsum("b i c, b j c -> b i j", q, k)x = torch.einsum("b i j, b j d, b i -> b i d", qk, v, z)if self.sr_ratio > 1:v = nn.functional.interpolate(v.permute(0, 2, 1), size=x.shape[1], mode='linear').permute(0, 2, 1)if bool:v = v.to(torch.float16)x = x.to(torch.float16)num = int(v.shape[1] ** 0.5)feature_map = rearrange(v, "b (w h) c -> b c w h", w=num, h=num)feature_map = rearrange(self.dwc(feature_map), "b c w h -> b (w h) c")x = x + feature_mapx = rearrange(x, "(b h) n c -> b n (h c)", h=self.num_heads)x = self.proj(x)x = self.proj_drop(x)x = rearrange(x, 'b (h w) c -> b c h w', h=H, w=W)return xclass Bottleneck(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, andexpansion."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.Attention = FocusedLinearAttention(c2)self.add = shortcut and c1 == c2def forward(self, x):"""'forward()' applies the YOLO FPN to input data."""return x + self.Attention(self.cv2(self.cv1(x))) if self.add else self.Attention(self.cv2(self.cv1(x)))class C3_FLAttention(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))


五、添加FLAttention到模型中

5.1 细节修改教程

5.1.1 修改一

我们找到如下的目录'yolov5-master/models'在这个目录下创建一个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。


​4.1.2 修改二

然后新建一个__init__.py文件,然后我们在里面添加一行代码。注意标记一个'.'其作用是标记当前目录。


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加)

​​​​


4.1.4 修改四

然后我们找到parse_model方法,按照如下修改->

到此就修改完成了,复制下面的ymal文件即可运行。

5.2 FLAttention的yaml文件和训练截图

5.2.1 FLAttention的yaml文件一

同时我发现这个FLAttention在训练的适合不稳定,有的数据集可以用有的不可以用,我一开始用一个数据集跑不通换了一个就可以了。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3_FLAttention, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3_FLAttention, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3_FLAttention, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

5.2.2 FLAttention的yaml文件二 

下面的是放在Neck部分的截图,参数我以及设定好了,无需进行传入会根据模型输入自动计算,帮助大家省了一些事。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, FocusedLinearAttention, []],  # 18[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 21 (P4/16-medium)[-1, 1, FocusedLinearAttention, []], #22[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 25 (P5/32-large)[-1, 1, FocusedLinearAttention, []], #26[[18, 22, 26], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

5.2.2 FLAttention的训练过程截图 

下面的是将FLAttention机制我添加到了C3和Bottleneck的训练截图。

下面的是我将FLAttention放在Neck中的截图。 


六、全文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv5改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2660977.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL 数据库归档工具pt-archive 与归档数据的安全存储 与 为什么每次归档都少数...

开头还是介绍一下群,如果感兴趣PolarDB ,MongoDB ,MySQL ,PostgreSQL ,Redis, Oceanbase, Sql Server等有问题,有需求都可以加群群内,可以解决你的问题。加群请联系 liuaustin3 ,(共1780人左右 1 2 3 4 5&#xff0…

java球队信息管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java Web球队信息管理系统是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发,数据库为Mysql5…

开源预约挂号平台 - 从0到上线

文章目录 开源预约挂号平台 - 从0到上线演示地址源码地址可以学到的技术前端技术后端技术部署上线开发工具其他技术业务功能 项目讲解前端创建项目 - 安装PNPM - 使用VSCODE - 安装插件首页顶部与底部 - 封装组建 - 使用scss左右布局中间内容部分路由 - vue-routerBANNER- 走马…

HCIA-Datacom题库(自己整理分类的)——OSPF协议判断

1.路由表中某条路由信息的Proto为OSPF则此路由的优先级一定为10。√ 2.如果网络管理员没有配置骨干区域,则路由器会自动创建骨干区域? 路由表中某条路由信息的Proto为OSPF,则此路由的优先级一定为10。 当两台OSPF路由器形成2-WAY邻居关系时&#xff0…

小梅哥Xilinx FPGA学习笔记18——专用时钟电路 PLL与时钟向导 IP

目录 一:IP核简介(具体可参考野火FPGA文档) 二: 章节导读 三:PLL电路原理 3.1 PLL基本实现框图 3.2 PLL倍频实现 3.3 PLL分频实现 四: 基于 PLL 的多时钟 LED 驱动设计 4.1 配置 Clocking Wizard 核 4.2 led …

useReducer 的奇妙世界:探索 React 状态管理的新境界(上)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

首发卡密引流系统 支持短视频点赞/关注获取卡密

搭建教程: 环境要求:Nginx、MySQL 5.6、PHP 5.6 步骤: 将压缩包解压至网站根目录。 打开域名/install,按照提示填写数据库信息进行安装。 管理后台: URL:域名/admin 账号密码:admin/123456 …

人机协同编程pyqt/pyside界面开发——第一章pyqt/pyside编程基础

环境安装:https://www.bilibili.com/video/BV1wc411D7WF/ 特别说明本文章适用于出于科研需要,用到这部分技术的,对其中的技术细节并未作过多的探究。而把侧重点放在科研工作者,如何通过这项技术的使用来达到自己的目的。尽可能的做到需要什么讲什么,用到什么学什么。这可以…

关于“Python”的核心知识点整理大全48

目录 world_population.py 16.2.5 制作世界地图 americas.py 16.2.6 在世界地图上呈现数字数据 na_populations.py 16.2.7 绘制完整的世界人口地图 world_population.py 16.2.8 根据人口数量将国家分组 world_population.py 16.2.9 使用 Pygal 设置世界地图的样式 w…

腾讯云轻量服务器和云服务器区别对比(超详细)

腾讯云轻量服务器和云服务器CVM该怎么选?不差钱选云服务器CVM,追求性价比选择轻量应用服务器,轻量真优惠呀,活动 https://curl.qcloud.com/oRMoSucP 轻量应用服务器2核2G3M价格62元一年、2核2G4M价格118元一年,540元三…

elasticsearch系列四:集群常规运维

概述 在使用es中如果遇到了集群不可写入或者部分索引状态unassigned,明明写入了很多数据但是查不到等等系列问题该怎么办呢?咱们今天一起看下常用运维命令。 案例 起初我们es性能还跟得上,随着业务发展壮大,发现查询性能越来越不…

YOLOv5改进 | 2023Neck篇 | CCFM轻量级跨尺度特征融合模块(RT-DETR结构改进v5)

一、本文介绍 本文给大家带来的改进机制是轻量级跨尺度特征融合模块CCFM(Cross-Scale Feature Fusion Module)其主要原理是:将不同尺度的特征通过融合操作整合起来,以增强模型对于尺度变化的适应性和对小尺度对象的检测能力。我将…

Python - 深夜数据结构与算法之 Binary Search

目录 一.引言 二.二分查找的简介 1.查找条件 2.代码模版 3.查找示例 三.经典算法实战 1.Search-Rotated-List [33] 2.Sqrt-X [69] 3.Search-2D-Matrix [74] 4.Find-Rotated-Min [153] 5.Valid-Perfect-Square [367] 四.总结 一.引言 前面介绍了二叉树和堆&#xf…

【Vue2+3入门到实战】(12)自定义指令的基本语法(全局、局部注册)、 指令的值、v-loading的指令封装 详细示例

目录 一、学习目标1.自定义指令 二、自定义指令1.指令介绍2.自定义指令3.自定义指令语法4.指令中的配置项介绍5.代码示例6.总结 三、自定义指令-指令的值1.需求2.语法3.代码示例 四、自定义指令-v-loading指令的封装1.场景2.需求3.分析4.实现5.准备代码 六、自定义指令总结 一、…

修改jenkins的目录(JENKINS_HOME)

默认JENKINS_HOME是/var/lib/jenkins/ 现要修改为/home/jenkins_data/jenkins 最开始 sudo cp -a /var/lib/jenkins/ /home/jenkins_data/ 然后如下操作: 1、首先 /etc/sysconfig/jenkins:jenkins配置文件,“端口”,“JENKIN…

【占用网络】OccNet: Scene as Occupancy 适用于检测、分割和规划任务 ICCV2023

前言 本文分享“占用网络”方案中,具有代表性的方法:OccNet。 它以多视角相机为核心,首先生成BEV特征,然后通过级联结构和时间体素解码器重建生成3D占用特征。 构建一个通用的“3D占用编码特征”,用以表示3D物理世界…

2023-12-29 服务器开发-centos-安装php8

摘要: 2023-12-29 服务器开发-centos-安装php8 centos-安装php8 必备条件 Minimal CentOS 8 / RHEL 8User with sudo rightsInternet Connection (1) 更新系统 更新系统 $ sudo dnf update $ sudo dnf upgrade 重启系统 $ sudo reboot (2) 启用 EPEL & Remi 软件库…

Starling-LM-7B与GPT-4:开源AI的新纪录

引言 在人工智能的前沿领域,Starling-LM-7B的出现标志着开源大型语言模型(LLM)的一大突破。与GPT-4的近距离竞争不仅展示了Starling-LM-7B的技术实力,也突显了开源社区在推动AI发展方面的重要作用。 模型特点 Starling-LM-7B&a…

HTML使用JavaScript的三种方式

要使用 JavaScript&#xff0c;你可以在 HTML 文件中的 <script> 标签中编写代码&#xff0c;或者将代码保存到一个单独的 .js 文件中并在 HTML 文件中引入。以下是一些常用的 JavaScript 使用方式&#xff1a; 内联 JavaScript&#xff1a;在 HTML 文件的 <script&g…

【电子通识】开关的种类

开关在我们日常生活与工作中使用较多。开关有无数种形式&#xff0c;种类繁多。从微小的按钮到巨大的控制器&#xff0c;功能多种多样。这种多样性受到机械或电气操作、手动或电子控制等因素的影响&#xff0c;并且与个人在设计美学和用户界面方面的偏好也有关。 电子开关采用 …