助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv6开发构建生活场景下城市部件检测识别系统

井盖、店杆、光交箱、通信箱、标石等为城市中常见部件,在方便居民生活的同时,因为后期维护的不及时往往会出现一些“井盖吃人”、“线杆、电杆、线缆伤人”事件。造成这类问题的原因是客观的多方面的,这也是城市化进程不断发展进步的过程中难以完全避免的问题,相信随着城市化的发展完善相应的问题会得到妥善解决。本文的核心目的并不是要来深度分析此类问题形成的深度原因等,而是考虑如何从技术的角度来助力此类问题的解决,这里我们的核心思想是想要基于实况的数据集来开发构建自动化的检测识别模型,对于摄像头所能覆盖的视角内存在的对应设施部件进行关注计算,后期,在业务应用层面可以考虑设定合理的规则和预警逻辑,结合AI的自动检测识别能力来对可能出现的损坏、倒塌、折断等问题进行及时的预警,通知到相关的工程技术人员来进行维护处理,在源头端尽可能地降低可能的损害,感觉这是一个不错的技术与实际生活场景相结合的落地点。

在前文中我们已经进行了相关的项目开发实践,感兴趣的话可以自行移步阅读:

《助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于DETR(DEtection TRansformer)开发构建生活场景下城市部件检测识别系统》

《助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv3开发构建生活场景下城市部件检测识别系统》

《助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv4开发构建生活场景下城市部件检测识别系统》

《助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv5全系列模型【n/s/m/l/x】开发构建生活场景下城市部件检测识别系统》

本文主要是选择YOLOv6来开发实现检测模型,首先看下实例效果:

Yolov6是美团开发的轻量级检测算法,截至目前为止该算法已经迭代到了4.0版本,每一个版本都包含了当时最优秀的检测技巧和最最先进的技术,YOLOv6的Backbone不再使用Cspdarknet,而是转为比Rep更高效的EfficientRep;它的Neck也是基于Rep和PAN搭建了Rep-PAN;而Head则和YOLOX一样,进行了解耦,并且加入了更为高效的结构。YOLOv6也是沿用anchor-free的方式,抛弃了以前基于anchor的方法。除了模型的结构之外,它的数据增强和YOLOv5的保持一致;而标签分配上则是和YOLOX一样,采用了simOTA;并且引入了新的边框回归损失:SIOU。
YOLOv5和YOLOX都是采用多分支的残差结构CSPNet,但是这种结构对于硬件来说并不是很友好。所以为了更加适应GPU设备,在backbone上就引入了ReVGG的结构,并且基于硬件又进行了改良,提出了效率更高的EfficientRep。RepVGG为每一个3×3的卷积添加平行了一个1x1的卷积分支和恒等映射的分支。这种结构就构成了构成一个RepVGG Block。和ResNet不同的是,RepVGG是每一层都添加这种结构,而ResNet是每隔两层或者三层才添加。RepVGG介绍称,通过融合而成的3x3卷积结构,对计算密集型的硬件设备很友好。

简单看下实例数据情况:

训练数据配置文件如下所示:

# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR
train: ./dataset/images/train # train images
val: ./dataset/images/test # val images
test: ./dataset/images/test # test images (optional)# whether it is coco dataset, only coco dataset should be set to True.
is_coco: False# Classes
nc: 4  # number of classes# class names
names: ['biaoshi', 'diangan', 'guangjiaoxiang', 'renjing']

默认我先选择的是yolov6n系列的模型,基于finetune来进行模型的开发:

# YOLOv6s model
model = dict(type='YOLOv6n',pretrained='weights/yolov6n.pt',depth_multiple=0.33,width_multiple=0.25,backbone=dict(type='EfficientRep',num_repeats=[1, 6, 12, 18, 6],out_channels=[64, 128, 256, 512, 1024],fuse_P2=True,cspsppf=True,),neck=dict(type='RepBiFPANNeck',num_repeats=[12, 12, 12, 12],out_channels=[256, 128, 128, 256, 256, 512],),head=dict(type='EffiDeHead',in_channels=[128, 256, 512],num_layers=3,begin_indices=24,anchors=3,anchors_init=[[10,13, 19,19, 33,23],[30,61, 59,59, 59,119],[116,90, 185,185, 373,326]],out_indices=[17, 20, 23],strides=[8, 16, 32],atss_warmup_epoch=0,iou_type='siou',use_dfl=False, # set to True if you want to further train with distillationreg_max=0, # set to 16 if you want to further train with distillationdistill_weight={'class': 1.0,'dfl': 1.0,},)
)solver = dict(optim='SGD',lr_scheduler='Cosine',lr0=0.0032,lrf=0.12,momentum=0.843,weight_decay=0.00036,warmup_epochs=2.0,warmup_momentum=0.5,warmup_bias_lr=0.05
)data_aug = dict(hsv_h=0.0138,hsv_s=0.664,hsv_v=0.464,degrees=0.373,translate=0.245,scale=0.898,shear=0.602,flipud=0.00856,fliplr=0.5,mosaic=1.0,mixup=0.243,
)

终端执行:

python3 tools/train.py --batch-size 8 --conf configs/yolov6n_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6n --epochs 100 --workers 2

即可启动训练,当然了如果想要训练其他系列的模型也可以,参照命令如下:

#yolov6n
python3 tools/train.py --batch-size 8 --conf configs/yolov6n_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6n --epochs 100 --workers 2#yolov6s
python3 tools/train.py --batch-size 16 --conf configs/yolov6s_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6s --epochs 100 --workers 2#yolov6m
python3 tools/train.py --batch-size 16 --conf configs/yolov6m_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6m --epochs 100 --workers 2#yolov6l
python3 tools/train.py --batch-size 8 --conf configs/yolov6l_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6l --epochs 100 --workers 2

日志输出如下所示:

训练完成输出如下:

Inferencing model in train datasets.: 100%|█████| 13/13 [00:07<00:00,  1.70it/s]Evaluating speed.Evaluating mAP by pycocotools.
Saving runs/train/yolov6n/predictions.json...
Results saved to runs/train/yolov6n
Epoch: 98 | mAP@0.5: 0.9564649861258367 | mAP@0.50:0.95: 0.6238790353332472Epoch        lr  iou_loss  dfl_loss  cls_loss
loading annotations into memory...
Done (t=0.11s)
creating index...
index created!
Loading and preparing results...
DONE (t=0.04s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=1.10s).
Accumulating evaluation results...
DONE (t=0.23s).Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.624Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.956Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.658Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.800Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.221Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.639Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.599Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.707Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.716Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.800Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.478Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.728

离线推理实例如下:

在实际应用开发的时候可以考虑如何更好地基于目标检测模型的检测计算结果来产生业务上的有效事件,这里大都是需要结合业务需求来设定合理有效的规则和预警逻辑的,这里暂时不是本文的重点,感兴趣的话都可以自行动手尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2660920.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

VSCODE : SSH远程配置+免密登录

SSH基础配置 填入地址&#xff0c;回车 ssh userhost-or-ip 然后选择默认的配置&#xff0c;回车&#xff0c;得到以下结果&#xff1a; 点击链接 选择远程的系统 输入密码 免密登录 生成SSH密钥&#xff1a; 首先&#xff0c;确保你已经在本地生成了SSH密钥。你可以使…

flutter学习-day21-使用permission_handler进行系统权限的申请和操作

文章目录 1. 介绍2. 环境准备2-1. Android2-2. iOS 3. 使用 1. 介绍 在大多数操作系统上&#xff0c;权限不是在安装时才授予应用程序的。相反&#xff0c;开发人员必须在应用程序运行时请求用户的许可。在 flutter 开发中&#xff0c;则需要一个跨平台(iOS, Android)的 API 来…

GoLang学习之路,对Elasticsearch的使用,一文足以(包括泛型使用思想)(二)

书写上回&#xff0c;上回讲到&#xff0c;Elasticsearch的使用前提即&#xff1a;语法&#xff0c;表结构&#xff0c;使用类型结构等。要学这个必须要看前面这个&#xff1a;GoLang学习之路&#xff0c;对Elasticsearch的使用&#xff0c;一文足以&#xff08;包括泛型使用思…

NXP实战笔记(三):S32K3xx基于RTD-SDK在S32DS上配置WDT配置

目录 1、WDT概述 2、SWT配置 2.1、超时时间&#xff0c;复位方式的配置 2.2、中断形式 1、WDT概述 SWT 编程模型只允许 32 位&#xff08;字&#xff09;访问。 以下任何尝试访问都是无效的: •非32位访问 •写入只读寄存器 •启用SWT时&#xff0c;将不正确的值写入SR…

java 纯代码导出pdf合并单元格

java 纯代码导出pdf合并单元格 接上篇博客 java导出pdf&#xff08;纯代码实现&#xff09; 后有一部分猿友叫我提供一下源码&#xff0c;实际上我的源码已经贴在帖子上了&#xff0c;都是同样的步骤&#xff0c;只是加多一点设置就可以了。今天我再次上传一下相对情况比较完整…

Python中实现列表边循环边删除的详细指南

更多Python学习内容&#xff1a;ipengtao.com 在 Python 中&#xff0c;有时需要在遍历列表的同时对其进行修改&#xff0c;即边循环边删除元素。这可能涉及到一些注意事项&#xff0c;以确保不会导致意外结果。本文将深入探讨如何在 Python 中实现这一需求&#xff0c;并提供详…

使用vue3实现echarts漏斗图表以及实现echarts全屏放大效果

1.首先安装echarts 安装命令&#xff1a;npm install echarts --save 2.页面引入 echarts import * as echarts from echarts; 3.代码 <template> <div id"main" :style"{ width: 400px, height: 500px }"></div> </template> …

基于element ui封装table组件

效果图&#xff1a; 1.封装表格代码如下 <template> <div><div class"TableList"><el-tablev-loading"loading"selection-change"selectionChange"class"table":data"tableData":border"hasBorde…

table表格中使用el-popover 无效问题解决

实例只针对单个的按钮管用在表格里每一列都有el-popover相当于是v-for遍历了 所以我们在触发按钮的时候并不是单个的触发某一个 主要执行 代码 <el-popover placement"left" :ref"popover-${scope.$index}"> 动态绑定了ref 关闭弹窗 执行deltask…

Centos如何修改ssh端口

想必很大一部分的同学用的是centos服务器&#xff0c;对于默认的22端口存在一定的安全风险&#xff0c;所以今天我们一起看下如何修改ssh端口 一、什么是SSH SSH&#xff08;Secure Shell&#xff09;是一种安全的远程登录协议&#xff0c;它允许您通过网络远程连接到Linux系统…

【零基础入门VUE】VueJS - 环境设置

✍面向读者&#xff1a;所有人 ✍所属专栏&#xff1a;零基础入门VUE专栏https://blog.csdn.net/arthas777/category_12537076.html 直接在 HTML 文件中使用 <script> 标签 <html><head><script type "text/javascript" src "vue.min.j…

【一分钟】ThinkPHP v6.0 (poc-yaml-thinkphp-v6-file-write)环境复现及poc解析

写在前面 一分钟表示是非常短的文章&#xff0c;只会做简单的描述。旨在用较短的时间获取有用的信息 环境下载 官方环境下载器&#xff1a;https://getcomposer.org/Composer-Setup.exe 下载文档时可以设置代理&#xff0c;不然下载不上&#xff0c;你懂的 下载成功 cmd cd…

SASS循环

<template><div><button class"btn type-1">默认按钮</button><button class"type-2">主要按钮</button><button class"type-3">成功按钮</button><button class"type-4">信息…

Jetpack Compose中使用Android View

使用AndroidView创建日历 Composable fun AndroidViewPage() {AndroidView(factory {CalendarView(it)},modifier Modifier.fillMaxWidth(),update {it.setOnDateChangeListener { view, year, month, day ->Toast.makeText(view.context, "${year}年${month 1}月$…

《MySQL》事务篇

事务特性 ACID Atomicity原子性&#xff1a;事务中的操作要么全部完成&#xff0c;要么全部失败。 Consistency一致性&#xff1a;事务操作前后&#xff0c;数据满足完整性约束。 Isolation隔离性&#xff1a;允许并发执行事务&#xff0c;每个事务都有自己的数据空间&…

Linux中的gcc\g++使用

文章目录 gcc\g的使用预处理编译汇编链接函数库gcc选项 gcc\g的使用 这里我们需要知道gcc和g实际上是对应的c语言和c编译器&#xff0c;而其他的Java&#xff08;半解释型&#xff09;&#xff0c;PHP&#xff0c;Python等语言实际上是解释型语言&#xff0c;因此我们经常能听…

单字符检测模型charnet使用方法,极简

Git链接 安装按照上面的说明&#xff0c;说下使用。 把tools下面的test做了一点修改&#xff0c;可以读取一张图片&#xff0c;把里面的单个字符都检测和识别出来。 然后绘制到屏幕上。 import torch from charnet.modeling.model import CharNet import cv2, os import num…

scratch打砖块游戏 2023年12月中国电子学会图形化编程 少儿编程 scratch编程等级考试三级真题和答案解析

scratch打砖块游戏 2023年12月电子学会图形化编程Scratch等级考试三级真题 一、题目要求 1、准备工作 (1)删除小猫角色,选择角色小球Ball、砖块Button3和球板Paddle (2)选择背景Stars,在背景底端绘制一条红色的线段 (3)建立一个变量“分数” 2、功能实现 (1)…

EXPLORING DIFFUSION MODELS FOR UNSUPERVISED VIDEO ANOMALY DETECTION 论文阅读

EXPLORING DIFFUSION MODELS FOR UNSUPERVISED VIDEO ANOMALY DETECTION 论文阅读 ABSTRACT1. INTRODUCTION2. RELATEDWORK3. METHOD4. EXPERIMENTAL ANALYSIS AND RESULTS4.1. Comparisons with State-Of-The-Art (SOTA)4.2. Diffusion Model Analysis4.3. Qualitative Result…

iPhone 13 Pro 更换『移植电芯』和『超容电池』体验

文章目录 考虑换电池Ⅰ 方案一Ⅱ 方案二 总结危险 Note系列地址 简 述: 首发买的iPhone 13P &#xff08;2021.09&#xff09;&#xff0c;随性使用一年出头&#xff0c;容量就暴跌 85%&#xff0c;对比朋友一起买的同款&#xff0c;还是95%。这已经基本得一天两充 >_<&a…